Blog

La découverte des anticorps

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez -vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. »

Samuel : « Monsieur Max, je sais que d’habitude nous commençons par le petit rappel. Mais j’ai une question. »

Max : « Alors commençons par ta question Samuel. »

Samuel : « Merci monsieur Max. Vous nous avez parler des maladies causées par les bactéries. Il y a la peste par exemple. Elle a fait beaucoup de mort la peste. « 

Max :  « Oui Samuel, effectivement. Entre 1347 et 1352 la peste a tué 41% de la population du Royaume de France ce qui fait 7 millions de personnes pour une population de 17 millions. »

Léo : « Oulala ! Tout ça ! »

Max : « Oui, tout ça. »

Samuel : « Ben moi, ce qui m’étonne, c’est que 59% de la population ne soient pas morts. Et, si j’ai bien compris mes lectures, les gens qui guérissent ne peuvent plus jamais être malade. Comment ça se fait ? »

Max : « Très bonne question Samuel ! J’apprécie ta curiosité. C’est ce que nous allons voir. Nous avons terminé d’étudier les réactions immédiates de l’organisme à l’infection. Je vous rappelle que ce sont la fièvre et la phagocytose. Nous allons maintenant étudier les réactions  lentes et, au passage, nous allons répondre à ta question Samuel. »

Samuel : « Merci monsieur Max. »

Max : « Je vous distribue un document. A vous de l’étudier et de répondre aux questions. Au travail ! »

La diphtérie et le tétanos sont deux maladies d’origine bactérienne. Dans les deux cas les bactéries produisent des molécules toxiques appelées toxines. Ces deux toxines sont mortelles chez la plupart des personnes mais certains individus survivent cependant.

En 1890, le chercheur Ernst Von Behring cherche à expliquer la résistance à la toxine diphtérique. Il obtiendra le prix Nobel pour es travaux en 1901.

Saurez-vous retrouver ses conclusions ?

Source : SVT 3ème, Hachette Éducation, 2008

Le sérum est la partie liquide du sang dépourvue de cellule et des protéines de coagulation.

1. Rédiger le protocole expérimental.

2. Formuler les résultats.

3. Classer dans l’ordre de taille décroissante les éléments suivants : Atome, cellule, molécule, organe, organisme.

4. Quelle conclusion tirez-vous de cette expérience ?

Léo : « Trop facile ! »

Samuel : « Monsieur Max, on peut faire l’intégralité de la démarche expérimentale ? »

Max : « Si vous voulez. »

Léo : « C’est parti ! »

Observation : « Suite à des épidémies de maladies d’origine bactérienne des individus meurent et d’autres survivent et ne retombent plus malades.

Problème : Comment expliquer cette immunisation ?

Expérience de Von Behring

Protocole :

Dans une première série, Von Behring injecte des bactérie provoquant le tétanos à un lot de souris. Dans une deuxième série, il injecte des bactérie provoquant le tétanos et du sérum de souris ayant survécu au tétanos. Dans la troisième série il injecte des bactéries provoquant le tétanos et le sérum de souris ayant survécu à la diphtérie.

Résultats :

Dans le premier lot, la plupart des souris meurent du tétanos. Dans le deuxième lot, les souris guérissent après avoir développé les symptômes du tétanos. Dans la troisième série la plupart des souris meurent.

Interprétation :

Dans la deuxième série, les souris guérissent car elles ont reçu quelque chose de souris guéries.

Conclusion : Suite à une infection bactérienne, des individus fabriquent des molécules qui les aident à guérir de la maladie.

Max : « Pourquoi affirmez-vous que ce sont des molécules ? »

Samuel : « Ben, parce que dans le sérum il n’y a pas de cellules. Grâce à la question 3 on sait que, plus petit que les cellules, il y a les molécules et les atomes. Mais on sait aussi que les atomes n’existent pas tous seuls. Ils forment des molécules. S’il n’y a pas de cellules, ce sont forcément des molécules. »

Max : « Très bien raisonné mon petit Samuel. Nous pouvons aussi ajouter que ces molécules sont produites en présence d’un élément étranger particulier. Cet élément est appelé antigène. La molécule produite par le corps en réponse à cet élément étranger est appelé anticorps. »

Samuel : « Je n’ai pas encore ma réponse mais je commence à comprendre. »

Max : « Nous continuerons à y répondre lors de la prochaine séance. Pour le moment rangez vos affaires et filez vous dégourdir les pattes. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Séance suivante

L’absorption intestinale des nutriments 1

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Léo, peux-tu faire le petit rappel s’il te plaît ? »

Léo : « Je peux. Nous avons vu que le bol alimentaire avance dans le tube digestif. Son aspect change au fur et à mesure de son avancée. Il y a digestion des aliments. A la fin de la digestion l’intestin grêle contient une solution riche en nutriments et des restes non digérés. »

Samuel : « Monsieur Max, puis-je donner la définition de la digestion ? »

Max : « Si tu veux Samuel. »

Samuel : « La digestion est l’ensemble des transformations mécaniques (broyage) et chimiques (sucs digestifs) qui conduisent des aliments à une solution riche en nutriments. »

Max : « Très bien ! Nous allons étudier la suite. »

Léo : « Ben oui ! Parce que dans la fin de l’intestin grêle il y a la solution riche en nutriments. Elle est plutôt très liquide. Mais dans la fin du gros intestin, il n’y a que les excréments qui sont solides. On peut se demander où est partie la solution riche en nutriments ! »

Max : « C’est effectivement le problème que nous allons tenter de résoudre aujourd’hui. En deux étapes. Tout d’abord nous allons mettre en évidence la diminution de la quantité de nutriments dans les intestins grâce à un graphique. Puis nous verrons où ils sont passés grâce à la démarche expérimentale. »

Léo : « Les méthodes habituelles 🙂 Lire et commenter un graphique puis la démarche expérimentale 🙂 « 

Samuel : « On sait bien faire maintenant ! C’est facile ! »

Max : « Alors je vous distribue les sujets… Voilà ! Au travail ! »

Absorption intestinale des nutriments 1

Max : « Bien, c’est terminé ! Je ramasse les copies… Faisons une correction rapide. »

Le graphique représente l’évolution de la quantité de nutriments (en unité arbitraire) en fonction de la distance à la bouche (en cm.)

Dans l’œsophage la quantité de nutriments est nulle. Dans l’estomac elle augmente jusqu’à 60 unités arbitraires puis elle commence à diminuer. Dans les intestins, la quantité de nutriments diminue. Elle est presque nulle à la fin de l’intestin grêle.

La digestion est l’ensemble des transformations mécaniques et chimiques qui conduisent des aliments aux nutriments solubles. Quand un aliment est digéré la quantité de nutriments solubles augmente. Or on voit que c’est dans l’estomac que la quantité de nutriments augmente. On peut en déduire que c’est dans l’estomac que la digestion a lieu.

Max : « Avez-vous des questions ? »

Léo : « Non monsieur Max. »

Samuel : « C’était facile ! »

Max : « Alors vous pouvez ranger vos affaires et allez vous dégourdir les pattes en récréation ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante

L’anatomie de l’appareil digestif 2

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Alors… Tiens, Samuel, le petit rappel s’il te plaît. »

Samuel : « Je vais résumer un peu. Nous étudions la fonction de nutrition chez les animaux ayant une bouche et un anus. Nous avons vu que chez ceux qui ont des dents, la denture est adaptée au régime alimentaire. C’est pratique pour nous comme ça, quand on trouve une mâchoire ou un crane, on peut savoir ce que mangeait l’animal sans savoir qui c’est 🙂 « 

Max : « Merci Samuel. Léo, je t’écoute pour la suite. »

Léo : « Ensuite nous avons vu que les animaux ayant une bouche et un anus sont traversés par un long tuyau appelé tube digestif. Il commence par la bouche puis se prolonge par l’œsophage, l’estomac, l’intestin grêle et le gros intestin. Il se termine par l’anus. Et parfois il y a un cæcum. Et puis ce qui entre par la bouche, c’est pas pareil que ce qui sort par l’anus. D’un côté il y a les aliments et de l’autre les excréments. Entre les deux ça se transforme. »

Max : « Encore une fois vous connaissez très bien vos leçons. Je suis fier de vous. »

Léo : « Merci monsieur Max. Mais j’ai une question. Lors de la séance précédente nous avons vu le tube digestif. Mais en plus il y avait le foie. Nous n’avons pas parlé du foie. »

Samuel : « Et si je dis pas des erreurs, il y a également les glandes salivaires dans la bouche. Elles produisent de la salive. »

Léo : « A quoi servent ces organes monsieur Max ? »

Max : « Toujours les bonnes questions au bon moment 🙂 Avant de voir à quoi servent ces organes je vous propose de les découvrir ainsi que d’autres dont vous n’avez pas parlé. Nous saurons alors ce qu’est l’appareil digestif. »

Léo : « Vous allez nous donner une activité ? »

Max : « Oui mes petits. »

Samuel : « Chouette alors ! On va découvrir tout seul ! »

Max : « Voici le sujet. Au travail ! »

Les glandes digestives et l’appareil digestif

Max : « Vous avez terminé ? Montrez moi votre travail… C’est très bien ! Bravo ! Nous pouvons corriger. »

2. Les glandes digestives.

Les glandes digestives sont des organes qui produisent les sucs digestifs indispensables à la digestion des aliments.

L’appareil digestif est constitué du tube digestif et des glandes digestives qui produisent les sucs digestifs.

Max : « Voilà ! Nous avons terminé et vous savez maintenant ce que vous avez dans le ventre 🙂 Vous devriez maintenant réussir à localiser ces organes dans votre propre corps. »

Léo : « Ben oui ! Là c’est mon estomac, là mon intestin grêle… »

Samuel : « Le gros intestin est là. Il remonte sur le côté droit, fait une branche horizontale en haut de l’abdomen puis il descend du côté gauche avant de se diriger vers l’arrière. »

Max : « C’est bien mes petits. Avez-vous des questions ? »

Samuel : « Monsieur Max, nous n’avons toujours pas parlé du cæcum ! »

Max : « La prochaine fois Samuel. C’est promis. »

Samuel : « Alors je n’ai pas de question. »

Léo : « Moi non plus. »

Max : « Alors filez vous dégourdir les pattes en récréation. »

Samuel et Léo : « Au revoir monsieur Max. »

Max : « Au revoir mes petits. »

Nutrition 1-2 GD

Séance suivante

Anatomie de l’appareil digestif 1

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Samuel, veux-tu faire le petit rappel s’il te plaît ? »

Samuel : « Je veux bien 🙂 Nous avons revu les régimes alimentaires. Il y a les phytophages, les zoophages et les omnivores. Puis nous avons vu que la denture dépend du régime alimentaire. »

Max : « Oui Samuel. Léo, les définitions de phytophage et de zoophage s’il te plaît. »

Léo : « Un phytophage est un animal qui se nourrit de matière organique d’origine végétale. Un zoophage se nourrit de matière organique d’origine animale. Il y a aussi les omnivores qui se nourrissent de matière organique d’origine végétale et animale. »

Max : « Bien Léo. Samuel, parle nous un peu des dentures. »

Samuel : « Il y a quatre types de dents : les incisives, les canines, les prémolaires et les molaires. Chez les zoophages les canines sont longues et pointues. Ce sont les crocs. Et les molaires sont tranchantes. Chez les phytophages, il n’y a pas de canines mais une barre sans dent. Les molaires sont larges et pleines de reliefs pour broyer les végétaux. Les incisives sont développées chez les rongeurs mais parfois, chez les pas rongeurs, elles n’existent même pas. »

Max : « Bravo à tous les deux ! Vous connaissez bien vos leçons ! Nous pouvons avancer. Il me semble que je vous avais annoncé les problème que nous allions résoudre. Vous souvenez-vous ? »

Léo : « Nous voulons savoir par où passe les aliments entre la bouche et l’anus ! »

Max : « Oui Léo. Comment pouvons-nous faire pour savoir ? »

Samuel : « Nous pourrions découper un animal pour voir comment il est fait en dedans. »

Léo : « Ça s’appelle une dissection ! »

Samuel : « Nous allons vraiment disséquer un animal ? »

Max : « Ce serait intéressant de voir réellement mais je n’aime pas trop tuer les animaux. Même pour faire avancer la science. Observons plutôt des photographies en commençant par celle d’un lapin disséqué. »

Léo : « Oulala ! C’est pas très ragoutant ! »

Samuel : « Nous aussi on est comme ça dedans ? »

Max : « Pas tout à fait. Je vous expliquerai les différence plus tard. Pour le moment pouvez-vous m’indiquer le trajet des aliments entre la bouche et l’anus ? »

Léo : « Ben non ! On ne voit pas la bouche ! »

Max : « Exact Léo ! Disons qu’après la bouche il y a l’œsophage qui arrive à l’estomac. »

Samuel : « Alors les aliments passent par la bouche, l’œsophage, l’estomac, l’intestin grêle et le gros intestin et les excrément passent par l’anus. Il y a aussi le cæcum mais je ne sais pas si les aliments passent dedans parce que c’est un peu sur le côté. »

Max : « Bonne réponse Samuel. Pour voir si vous avez compris vous allez légender le dessin de la dissection d’un appareil digestif de souris. »

 

 

 

 

 

 

 

 

 

 

 

 

 

Dessin de la dissection de l’appareil digestif de la souris

Max : « Très bien mes petits ! Comparons ces deux appareils digestifs. »

Léo : « Chez le lapin le cæcum est bien plus grand que chez la souris ! »

Samuel : « Les intestins semblent plus longs chez le lapin que chez la souris aussi ! »

Léo : « Par contre j’ai l’impression que l’estomac est plus grand chez la souris que chez le lapin ! »

Max : « Quels bons observateurs vous êtes mes petits ! Bravo à vous ! Avant de noter la leçon, revenons au lapin et regardons le contenu des organes dont vous avez parlé. »

Samuel : « Dans la bouche il y a des aliments broyés mélangés à la salive. »

Léo : « C’est un peu pareil dans l’estomac. Mais chez les humains, ça dépend du temps qui a passé depuis qu’on a avalé les aliments. Je le sais à cause du vomi. »

Samuel : « Oui ! Quand on vomit juste après manger ça ressemble un peu à ce qu’on a mangé. Mais au bout de quelques heures c’est une espèce de bouillie très liquide qui sent pas bon ! »

Max : « C’est vrai 🙂 « 

Samuel : « Dans l’intestin grêle c’est très liquide ! Il n’y a presque plus de morceaux. »

Léo : « Et dans le gros intestin ça ressemble de plus en plus à des excréments. En fait, on ne devrait pas parler du trajet des aliments parce que très rapidement ce ne sont plus des aliments… »

Max : « C’est vrai Léo. Nous parlerons du bol alimentaire puis d’excréments. Bien, nous pouvons noter la leçon. »

II. ANATOMIE DE L’APPAREIL DIGESTIF.

L’anatomie est la science qui étudie la disposition des organes.

1. Le tube digestif.

Les aliments sont avalés. Ils sont rapidement transformés en bol alimentaire. Le bol alimentaire avance dans l’œsophage, l’estomac, l’intestin grêle, le gros intestin et les excréments sont évacués par l’anus. Ces organes constituent le tube digestif.

Le tube digestif est un long tuyau allant de la bouche à l’anus et comprenant l’œsophage, l’estomac, l’intestin grêle, le gros intestin et le cæcum. Il se termine par l’anus.

Le tube digestif n’est pas exactement le même selon les régimes alimentaires. Les rongeurs ont un cæcum très développé et des intestins très longs. Chez les zoophages l’estomac est plus développé.

Max : « Avez-vous des questions ? »

Samuel : « Oui monsieur Max ! A quoi sert le cæcum ? »

Max : « Bonne question. C’est ce que nous verrons bientôt. Si vous n’avez pas d’autres questions vous pouvez ranger vos affaires et sortir vous dégourdir les pattes ! »

Samuel : « D’accord. Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Photo d’illustration d’une grenouille et d’une souris disséquées. (FlickrCC/Estonia76)

Nutrition 1-1 TD

Séance suivante

Dérive des continents ou tectonique des plaques ?

Max : « Nous voici dans un nouveau complément 🙂 « 

Léo : « On aime bien les compléments nous 🙂 « 

Max : « Tant mieux. Vous me parliez de dérive des continents alors que je vous enseignais la tectonique des plaques. Voyons les différences. La dérive des continents est une intuition géniale d’un scientifique allemand du début du 20ème siècle : Alfred Wegener. C’était un astronome et météorologue. »

Samuel : « Il n’était pas géologue ? »

Max : « Non. Et ce fut un problème. Retournons au début du 20ème siècle. La météorologie n’est pas du tout précise et Wegener se lance dans des explorations du globe afin d’accumuler les observations dans l’espoir de réussir à affiner les modèles de prévisions météorologiques. Et c’est un esprit curieux. Ses observations ne se limitèrent pas à la météo. »

Léo : « Qu’a-t-il observé d’autre ? »

Max : « Des tas de choses. Des fossiles par exemple. Il a remarqué, mais il n’était pas le seul, que les aires de répartition de certains fossiles datés de 260 à 240 millions d’années avant nos jours étaient difficiles à expliquer. »

Samuel : « Quels sont ces fossiles ? »

Max : « Il y a 4 exemples classiques. Commençons par le mésosaure. C’est un ‘reptile’ d’eau douce qui pouvait atteindre un mètre de long. Regardez.

Max : « Ses fossiles s’observent au sud-est de l’Amérique du sud et au sud-ouest de l’Afrique. Le lystrosaure et le cynognathus ont également des aires de répartition assez étranges. »

Lystrosaurus

Cynognathus

Max : « Ce sont deux animaux terrestres. Le cynognathus s’observe lui aussi en Amérique du sud et en Afrique du Sud, un peu au nord des sites où ont été retrouvés les fossiles des mésosaures. Le cynognathus se retrouve aux mêmes endroits mais aussi en Inde et en Antarctique. »

 

Léo : « C’est étrange. Surtout pour des animaux d’eau douce ou terrestres. »

Samuel : « Ils n’ont pas pu traverser l’Atlantique à la nage ! »

Max : « C’est encore plus étrange pour des plantes ! On retrouve des fossiles de glossoptéris un peu partout dans l’hémisphère sud. »

Photographie de feuilles fossilisées de glossopteris

Carte de répartition mondiale de fossiles de 4 espèces

Léo : « Vous avez déjà remarqué que les côtes de l’Afrique et de l’Amérique du sud semblent bien s’emboîter ? « 

Samuel : « Ça m’a toujours surpris. »

Léo : « Si on les emboîte les aires de répartitions des fossiles semblent bien plus logiques ! »

Max : « C’est aussi ce que s’est dit Wegener. Regardez ce que ça donne. »

Samuel : « Tous les continents sont emboîtés ! »

Léo : « Ça marche bien… »

Max : « On appelle ce vaste continent ‘Pangée’ ce qui signifie ‘toutes les terres’.

Léo : « Et la Pangée explique d’autres faits ? »

Max : « Oui Léo. Certaines roches qui s’observent de part et d’autres de l’Atlantique par exemple. Voyons ça… »

Max : « Nous voyons qu’une vaste chaîne de montagne érodée se retrouve de part et d’autre de l’Atlantique. Une partie est appelée Appalaches et l’autre Mauritanides. »

Léo : « Ça alors ! Le plus étonnant est qu’une chaîne de montagnes montre qu’il y a eu collision de deux lithosphères continentales. Et là, la divergence a eu lieu dans la chaîne de montagnes ! »

Max : « Oui Léo. C’est le seul cas que je connaisse… »

Samuel : « Il y a autre chose encore ? »

Max : « Des traces de glaciation. Vous savez sûrement que les glaciers se déplacent. S’ils reposent sur des cailloux ou des rochers mobiles, ces rochers avancent eux aussi mais comme ils sont écrasés ils griffent les roches sur lesquelles ils avancent. On parle de stries glaciaires. Wegener en a observé beaucoup dans l’hémisphère sud. Et encore une fois, elles ne s’expliquent qu’en rassemblant les continents actuels en la Pangée. »

Max : « A partir de toutes ces observations Wegener a donc proposé la Pangée et la dérive des continents. Mais il n’a eu aucun succès. »

Léo : « Pourquoi ? »

Max : « Pour deux raisons qui sont évidemment liées. La première est qu’il n’était que météorologue. Une science qui n’était pas vraiment prise au sérieux à l’époque. Les géologues qui se prenaient pour de vrais scientifiques n’ont pas apprécié que ce ne fut pas l’un des leurs qui propose cette intuition. Et puis Wegener ne proposait pas d’explication. Il n’avait pas de théorie. »

Samuel : « Qu’est ce qu’une théorie monsieur Max ? »

Max : « La vérité pour un scientifique 🙂 Une théorie… Je vais vous donner trois des définitions les plus unanimement acceptées actuellement. »

Selon André Lalande (1991), une théorie scientifique est une large synthèse se proposant d’expliquer un grand nombre de faits.

Selon Robert Nadeau (1999) une théorie est un système intellectuel provisoire et révisable, utilisé comme moyen de coordonner, calculer, interpréter, comprendre, expliquer et prédire.

Selon Karl Popper (1902-1994) il s’agit d’un système formé d’énoncés synthétiques universels permettant, à l’aide de conditions initiales appropriées, de fournir une explication causales de faits exprimés par des énoncés singuliers, ou d’en effectuer la prédiction.

Léo : « Je ne comprends pas tout… Une théorie doit expliquer des faits et faire des prédictions. C’est ça ? »

Max : « C’est une version simple mais compréhensible. »

Samuel : « Je vois ! Wegener dit que les continents ont dû se déplacer pour expliquer les observations qu’il a faites. Mais il ne dit pas comment ils bougent. Alors ce n’est pas une théorie. »

Max : « Exact Samuel ! Mais c’est une intuition géniale ! Et c’est pour cela que les autre scientifiques l’ont détesté ! Il a eu cette intuition et, plein d’humilité, il leur a demandé de l’expliquer. »

Samuel : « Et la théorie de la tectonique des plaques, qui l’a inventée ? »

Max : « Il a fallu du monde 🙂 C’est une accumulation de publications qui a mené à cette théorie. Si je devais garder un nom… Je dirais Xavier Le Pichon dans les années 1980. 1986 il me semble. »

Léo : « Il aura fallu 70 ans pour comprendre ! »

Max : « Pour comprendre en partie. Nous ne savons pas tout encore ! Il reste du travail. Je vais reprendre cette théorie en un schéma. Vous êtes prêts ? »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Il y a beaucoup de chaleur au centre de la Terre. Elle provoque des mouvements dans le manteau. On parle de cellules de convection. Ces mouvements se font à l’état solide. Ils sont à l’origine de la divergence des plaques et donc du fonctionnement des dorsales. Au niveau de la dorsale il y a fusion, formation de magma et volcanisme. Mais si de la lithosphère se crée, il faut qu’il en disparaisse. C’est ce qu’il se passe au niveau des fosses. Voilà, vous savez tout. »

Léo : « C’est pas très difficile en fait. »

Samuel : « Ben non. Dites monsieur Max, vous nous avez bien dit que vous ne deviez parler que de la lithosphère et de l’asthénosphère n’est ce pas ? »

Max : « Oui Samuel. »

Samuel : « Mais ce n’est pas possible d’expliquer la théorie de la tectonique des plaques avec si peu d’informations ! On ne peut rien expliquer ! »

Max : « Tu as compris mon problème Samuel. Soit je ne fais que ce qu’il m’est demandé et vous ne pouvez pas comprendre. Soit je vous explique et nous prenons du retard dans le programme. »

Léo : « Vous nous avez expliqué et nous vous en remercions monsieur Max. »

Samuel : « Tant pis si on ne voit pas tout. L’essentiel est de comprendre ce qu’on fait. »

Max : « Merci mes petits. Loin de moi l’idée de vous chasser mais il me semble que la sonnerie a retenti. »

Léo : « Alors on file ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante

Les mouvements des plaques

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Léo : « Monsieur Max, puis-je faire le petit rappel ? »

Max : « Si tu veux Léo. »

Léo : « Nous avons vu que la surface de la Terre est découpée en une douzaine de grands morceaux appelés plaques lithosphériques. La lithosphère est la couche la plus superficielle de la Terre. Elle comprend la croûte et le manteau lithosphérique. Ça fait environ 100 km d’épaisseur. Dessous, il y a l’asthénosphère. Elle va jusqu’à 700 km de profondeur. »

Max : « C’est un bon résumé 🙂 »

Samuel : « Monsieur Max, j’ai une question. »

Max : »Vous avez toujours des questions. Sachez que j’apprécie votre curiosité. »

Samuel : « Merci monsieur Max. J’ai remarqué quelque chose sur les cartes du monde. Est-ce normal que j’ai l’impression que l’Afrique et l’Amérique du sud pourraient s’emboîter l’une dans l’autre ? »

Max : « Bien observé Samuel. Regardons cela de plus près. »

Carte montrant la juxtaposition de l’Afrique et de l’Amérique du sud (Les espaces sont représentés en rouge et les chevauchements en bleu).

Léo : « Ah oui ! Ça alors ! Ça voudrait dire que ces deux continents se sont écartés ? »

Samuel : « C’est ce que je me suis dit aussi. C’est possible ça monsieur Max ? »

Max : « Il faudrait vérifier. »

Samuel : « On pourrait mesurer la distance entre deux points chaque année. On verrait peut-être que la distance augmente en fonction du temps. »

Léo : « Si ça augmente encore… Peut-être que ça s’est arrêté. Et puis il faudrait pouvoir mesurer cette distance avec précision. Je ne sais pas si c’est possible ça. »

Max : « Disons qu’avec les techniques modernes c’est assez facile à faire. Il suffit de mesurer la distance séparant deux points grâce aux satellites. Prenons un exemple… « 

Graphiques représentant le déplacement d’un point en France (en cm) en fonction du temps (en années) (source Hachette, SVT 4ème, programme 2007)

Samuel : « Monsieur Max, la latitude, c’est bien la position d’un point par rapport à l’équateur ? »

Max : « Oui Samuel. »

Léo : « Et donc, la longitude c’est par rapport au méridien de Greenwich. »

Samuel : « On voit que le point s’est déplacé d’environ 18 cm vers le nord entre 1995 et 2006. »

Léo : « Et le même point s’est déplacé d’environ 26 cm vers l’est entre 1995 et 2006. »

Samuel : « Comment fait-on pour trouver le bon mouvement et son déplacement réel ? »

Max : « Avez-vous déjà eu des cours de mathématiques ? »

Léo : « Ben oui ! »

Max : « Connaissez-vous le théorème de Pythagore ? »

Samuel : « On l’a étudié, oui. »

Max : « Alors appliquons le ! »

Léo : « Mais ! Monsieur Max, le théorème de Pythagore s’applique à un triangle rectangle ! »

Max : « Et comme ça ? »

Léo : « Ben comme ça ça marche ! On sait que le carré de D est égal à la somme des carrés de 18 et de 25. »

Max : « Exact ! Ce qui donne… »

Samuel : « Ce qui donne que le point étudié situé en France s’est déplacé de 31 cm vers le nord-est en 11 ans. Ce qui fait… environ 2,8 cm par an ! »

Max : « Si nous faisions la même chose avec un point situé en Amérique du Nord nous obtiendrions à peu près la même chose. »

Léo : « Mais alors ça veut dire que l’océan Atlantique s’écarte ! »

Max : « Oui Léo, l’océan Atlantique s’ouvre 🙂 Les plaques se déplacent les unes par rapport aux autres. »

Samuel : « Mais… »

Max : « Oui Samuel ? »

Samuel : « Je ne suis pas sûr mais il me semble que la Terre ne grandit pas. Si des plaques s’écartent, il doit y en avoir qui se rapprochent alors ! »

Max : « Absolument 🙂 Et par endroits, elles coulissent l’une contre l’autre. Cela me fait penser que j’ai un travail à vous donner pour la prochaine fois. Vous allez vous approprier cela en réalisant une carte. Je vous distribue le même fond de carte que la dernière fois, puis vous colorerez les limites de plaques. Vous utiliserez le bleu pour les zones de divergence, le rouge pour les zones de convergence et le vert pour les zones de coulissement. Puis vous remplirez le tableau joint à la carte. »

Samuel : « Nous devons le faire maintenant ? »

Max : « Non mes petits. Vous ferez ce travail pour la prochaine fois. »

Léo : « Oups ! Vous l’aviez dit. »

Max : « Cela ne devrait pas vous poser trop de problème. Voici le document. N’oubliez ni le titre ni la légende. « 

Samuel et Léo : « Oui monsieur Max ! »Activité : les mouvements des plaques (version imprimable)

Max : « Avez-vous des questions ? »

Samuel : « Oui 🙂 Enfin, pas vraiment. Mais un peu. »

Max :  » 🙂 Je t’écoute Samuel. »

Samuel : « Si les plaques bougent, ça implique que les cartes du monde changent avec le temps. C’est possible de reconstituer les cartes anciennes ? »

Léo : « Et de voir les cartes futures ? »

Max : « C’est possible. J’ai même un petite vidéo à vous montrer si vous voulez. Mais j’ai peur qu’elle empiète sur votre récréation. »

Léo : « C’est pas grave ! On veut voir ! »

Max : « D’accord 🙂 Cette vidéo commence par remonter le temps jusqu’il y a 250 millions d’années. Puis elle revient à l’actuel et montre ce qu’il va peut-être se passer pendant les 250 millions d’années à venir. »

Paleomaps

Léo : « Rholala ! »

Max : « Mes petits, la leçon est terminée. Filez vite ! »

Samuel : « Oui monsieur Max. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Critères d’évaluation de la carte

Séance suivante

La structure de la Terre

Max : « Nous voici donc dans le complément. Je vous remercie de m’avoir suivi 🙂 « 

Léo : « Parlez-nous de la structure de la Terre monsieur Max s’il vous plaît ! »

Max : « Commençons par un peu de théorie. Je vais faire bref rassurez-vous. C’est grâce aux ondes sismiques que nous savons que la Terre est constituée de couches concentriques. Quand il y a une surface de discontinuité, les ondes sismiques rebondissent un peu dessus. En enregistrant les ondes sismiques on peut mettre en évidence ces surfaces de discontinuité. »

Léo : « Alors avec les ondes sismiques on pourrait voir les limites entre les pages d’un livre ? »

Max : « C’est une bonne comparaison Léo. Bien, commençons. C’est en 1909 qu’intervient la première découverte. Pour rappel, le sismomètre, qui permet d’enregistrer les ondes sismiques n’a alors que quelques années puisque von Reuber Paschwitz en a créé le premier exemplaire vers 1885. En 1909 le croate Andrija Mohorovicic découvre la première discontinuité. Elle se trouve vers 5 à 10 km de profondeur sous les océans et entre 20 à 90 km sous les continents. Cette discontinuité entre deux couches solides a depuis été appelée discontinuité de Mohorovicic ou plus simplement Moho. Le Moho sépare la croûte de ce qui a été appelé manteau. »

Léo : « Monsieur Max, pourriez-vous nous rappeler le rayon de la Terre s’il vous plaît ? »

MAx : « Bien sûr Léo. Ce rayon est d’environ 6 500 km. »

Samuel : « Elle est toute fine la croûte ! »

Léo : « Surtout la croûte océanique ! 5 km pour 6500 ! Ça fait… environ 0,07% ! Rholala ! Bon, il y a la croûte toute fine qui repose sur le manteau. Et il est profond comment le manteau ? »

Max : « Nous le savons grâce au scientifique allemand Beno Gutenberg. En 1912 il mit en évidence une discontinuité entre le manteau et le noyau externe. Vous vous doutez que cette discontinuité porte son nom depuis. C’est la discontinuité de Gutenberg. On la nomme également interface noyau-manteau ou CMB (core-mantle boundary). »

Léo : « Le noyau externe est liquide ? »

Max : « Eh oui ! C’est grâce à la géologue danoise Inge Lehmann que nous le savons. C’est elle qui, en 1936, découvre une nouvelle discontinuité, la discontinuité de Lehmann. C’est celle qui sépare le noyau externe liquide du noyau interne solide également appelé graine. »

Samuel : « Alors il y a… 1, 2, 3 et 4 couches principales ! Le noyau interne, le noyau externe, le manteau et la croûte. »

Max : « Ce serait trop simple 🙂 Inge Lehmann, toujours elle, a découvert une autre discontinuité, moins nette. Elle se trouve vers le sommet du manteau. Ah ! J’ai oublié de vous dire quelque chose. Les trois discontinuités dont je vous ai parlé ne sont pas de même nature. Le Moho sépare deux milieux solides. Ils diffèrent par la nature des roches. Les continents sont constitués de granite. »

Léo : « Une roche grenue ! On en a déjà vu du granite ! »

Max : « Oui Léo. La croûte océanique est elle, composée de basalte. »

Samuel : « On l’a dessinée et vue au microscope. Il y a un verre, des microlites et des cristaux. On dit qu’elle a une structure microlitique et c’est une roche volcanique. »

Léo : « Du volcanisme effusif comme au niveau des dorsales ou des points-chauds ! »

Max : « Quel plaisir de vous avoir comme élèves ! Vous vous souvenez de tout ! »

Léo : « C’est parce qu’on étudie, nous ! »

Samuel : « Et qu’on aime bien vos cours ! »

Max : « C’est surtout parce que vous étudiez… Le manteau est constitué de péridotites. »

Léo : « Vous nous avez montré une photographie de péridotite observée au microscope. »

Max : « Oui. Vous ai-je montré un échantillon ? »

Samuel : « Un échantillon du manteau ? Vous avez un échantillon des roches du manteau ? »

Max : « Oui 🙂 Il arrive que le magma basaltique entraîne avec lui des fragments de manteau qui ne se sont pas trop modifiés au passage. Vous voulez voir ? »

Léo : « Un morceau du manteau ? Ben oui ! »

Max : « Alors je vous le montre 🙂 Je vais le chercher… Voilà ! »

Une enclave de péridotite dans un basalte de point chaud

Samuel : « Waouh ! Un morceau de manteau ! »

Léo : « On en a de la chance ! C’est pas tout le monde qui voit ça ! »

Samuel : « Merci monsieur Max ! »

Max : « A votre service mes petits. Reprenons. La discontinuité de Gutenberg est plus complexe. Elle sépare deux milieux de compositions ET d’états différents. On passe des péridotites solides à un mélange de fer, nickel et soufre liquide. La discontinuité de Lehmann sépare simplement deux couches d’états différents. On trouve le même mélange de fer, nickel et soufre mais dans le noyau interne, ce mélange est à l’état solide. Vous suivez ? »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Alors revenons à Inge Lehmann. elle découvrit en même temps que la limite au sein du noyau montre une autre limite, moins nette, au sein du manteau supérieur. Cette zone un peu diffuse se caractérise par un ralentissement des ondes sismiques. On parle de LVZ pour Low Velocity Zone. »

Samuel : « Comment on explique le ralentissement des ondes sismiques ? »

Max : « Par une diminution de dureté. Il y a là, au sein du manteau supérieur, une couche légèrement molle qui a été nommée asthénosphère. Au dessus, recoupant en partie le manteau supérieur et la croûte, on trouve la lithosphère. »

Léo : « Ça se complique un peu là… »

Max : « Un schéma pourrait vous aider. Regardez… »

Coupe schématique de la Terre (source AVG)

Léo : « Je comprends ! C’est dans le manteau supérieur que c’est compliqué. Il y a le manteau asthénosphérique mais on dit seulement asthénosphère. »

Samuel : « Et la lithosphère comprend le manteau lithosphérique et la croûte ! »

Max : « Vous avez compris. Normalement je ne devrais vous parler que de l’asthénosphère et de la lithosphère. »

Samuel : « Et pas du reste ? »

Max : « Ben non. Mais comme vous comprenez tout… Je peux faire un complément dans le complément 🙂 « 

Samuel et Léo : « Oh oui ! »

Max : « Il existe une petite couche, appelée D » (on dit D seconde) à la base du manteau. Dans cette couche se trouvent de grandes quantités d’éléments radioactifs. »

Samuel : « Des éléments radioactifs ? Ceux qui se désintègrent en produisant de l’énergie ? »

Max : « Exact ! Tu m’impressionnes Samuel. »

Léo : « Mais s’il y a production d’énergie… Ça chauffe et les roches du dessus fondent ! »

Max : « Exact aussi 🙂 Et tu m’impressionnes tout autant que Samuel. Bon, si vous n’avez pas de questions nous pouvons retourner dans notre article précédent. »

Léo : « Allons-y alors ! »

Andrija Mohorovicic

(1857-1936)

Beno Gutenberg

(1889-1960)

Inge Lehmann

(1888-1993)

Retour aux plaques lithosphériques

Les plaques lithosphériques

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Qui veut faire un petit rappel ? »

Léo : « La dernière séance ? »

Max : « Oui Léo. »

Samuel : « Moi monsieur Max ! Nous avons réalisé une carte montrant la répartition mondiale des volcans et des séismes. En fait, les volcans et les séismes s’observent à peu près aux mêmes endroits, le long de fines zones très allongées : les dorsales, les fosses et les chaînes de montagnes. »

Max : « Très bien  Samuel ! Je montre cette carte une nouvelle fois. « 

Carte montrant la répartition mondiale des séismes et des volcans.

Léo : « Mais ça veut dire qu’il y a de vastes zones dans laquelle il ne se passe presque rien alors ! »

Max : « Exact Léo. Ce sont ces zones calmes qui sont appelées plaques tectoniques. »

Léo : « Monsieur Max, auriez-vous une carte de ces plaques tectoniques s’il vous plaît ? »

Max : « C’était prévu Léo 🙂 La voici… »

Carte des plaques tectoniques

Léo : « Elles sont grandes ces plaques ! »

Samuel : « Et elles ne correspondent pas forcément à un continent ou à un océan. »

Léo : « Tu as vu comme la plaque africaine ressemble à l’Afrique ? »

Samuel : « Oui, mais en plus grand, avec de l’océan tout autour sauf au nord. »

Léo : « Et l’Europe et l’Asie sont soudées ! »

Samuel : « C’est l’Eurasie ! »

Max : « Oui, vous avez en tous points raison 🙂 Les plaques ne correspondent pas aux continents. Elles portent souvent un peu d’océan et un peu de continent. »

Léo : « Il y en a qui ne portent que de l’océan comme la plaque pacifique, la plaque Cocos, la plaque Nazca… »

Samuel : « Monsieur Max, on voit bien que les plaques sont très grandes. Mais leur épaisseur ? Peut-on connaître leur épaisseur ? »

Max : « Oui c’est possible. Mais pour cela nous allons faire un petit détour par un complément. Suivez moi ! »

Le complément

Léo : « Il était bien le complément 🙂 « 

Max : « J’en suis ravi. Alors, Samuel, as-tu la réponse à ta question ? Je te rappelle que tu voulais connaître l’épaisseur des plaques lithosphériques. »

Samuel : « Les plaques lithosphériques comprennent la croûte et le manteau lithosphérique. Alors ça fait… Je sais pas en fait. »

Max :  » 🙂 La lithosphère mesure de 80 à 120 km d’épaisseur. Mais nous verrons que son épaisseur peut être nulle. Je vous l’expliquerai. L’asthénosphère va jusqu’à 700 km de profondeur. Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max ! »

Max : « Alors nous pouvons noter la leçon. Prenez vos cahiers et notez. »

LA TECTONIQUE DES PLAQUES

I. LES PLAQUES LITHOSPHÉRIQUES.

L’activité interne du globe se manifeste par des séismes et du volcanisme. Cette activité est concentrée dans des zones étroites et allongées. Ce sont les dorsales, les fosses et les chaînes de montagnes. Ces zones délimitent de vastes zones inactives qui sont les plaques lithosphériques. Elles sont épaisses de 80 à 120 km. L’activité géologique se concentre aux limites des plaques.

La lithosphère est la couche la plus superficielle de la Terre. Elle est froide et cassante. Elle comprend la croûte et le manteau lithosphérique. La lithosphère repose sur l’asthénosphère.

L’asthénosphère est une couche solide, légèrement molle et chaude. Elle s’étend entre 100 et 700 km de profondeur.

Max : « Toujours pas de questions ? »

Léo : « Non. C’est très clair. »

Max : « Alors vous pouvez sortir vous aérer en récréation. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante

LA TECTONIQUE DES PLAQUES

Dans ce chapitre nous allons essayer de comprendre la localisation des séismes et des volcans. Nous verrons que la surface de la Terre est constituée d’une douzaine de morceaux qui se déplacent les uns par rapport aux autres. Ce sont les fameuses plaques tectoniques. Nous verrons que ces mouvements sont de trois types et qu’ils sont responsables du visage actuel de la Terre. Ce visage n’est toutefois pas immuable puisque les plaques se déplacent. Je tacherai de vous faire comprendre que ces mouvements sont à l’origine de l’ouverture des océans. Eh oui ! Les océans naissent eux aussi 🙂 Mais ils se referment également et des chaînes de montagnes apparaissent… Évidemment ces mouvements sont lents et personne ne verra un nouveau visage de la Terre.

Voilà pour le programme. Nous pouvons commencer 🙂

Séance suivante

Les besoins des organes, le cours

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits ! Aujourd’hui nous allons faire le cours qui correspond à tout ce que nous avons vu lors de ces derniers cours. Vous verrez, cela va être très rapide. »

Samuel : « Ben oui ! Nous avons vu peu de choses. Nous savons qu’un organe, les cellules qui le constituent, ont besoin de glucose et de dioxygène pour fournir de l’énergie. Et aussi que cette production d’énergie produit des déchets qu’il va falloir évacuer. »

Léo : « Samuel a raison. Nous n’avons vu que ça. »

Max : « Avec des méthodes : la démarche expérimentale, la lecture de graphique, la réalisation de schémas… Je reprends depuis le début. Prenez vos cahiers et notez. »

LES BESOINS DES ORGANES

I. L’ADAPTATION DU CORPS À L’EFFORT PHYSIQUE.

Lors d’un effort physique la fréquence cardiaque, la fréquence respiratoire et la température corporelle augmentent.

II. LES BESOINS DES CELLULES.

Pour fonctionner, les cellules ont besoin de glucose et de dioxygène et elles doivent rejeter du dioxyde de carbone et d’autres déchets.

III. LES ÉCHANGES ENTRE LES ORGANES ET LE SANG.

Les organes prélèvent du dioxygène et du glucose dans le sang. Ils y rejettent du dioxyde de carbone et d’autres déchets. Les organes réalisent leurs échanges avec le sang.

IV. LA PRODUCTION D’ÉNERGIE PAR LES CELLULES.

Avec le dioxygène et le glucose qu’elles prélèvent, les cellules produisent de l’énergie qui leur permet de fonctionner. Une partie de l’énergie est perdue sous forme de chaleur. La production d’énergie s’accompagne de la production de déchets qui doivent être évacués de la cellule puis de l’organisme.