La fécondation

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits ! Samuel, le petit rappel s’il te plaît. »

Samuel : « Bien sûr monsieur Max. En ce moment nous étudions la reproduction sexuée chez les animaux. Nous savons que pour qu’il y ait reproduction sexuée il faut un mâle et une femelle de la même espèce. »

Léo : « Une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde. »

Max : « Merci Léo pour cette interruption 🙂 « 

Samuel :  » 🙂 Le mâle produit des spermatozoïdes qui sont des cellules mobiles grâce à leur flagelle. Les femelles produisent des ovules qui sont des cellules sphériques et immobiles. »

Léo : « J’ajouterais que les ovules sont toujours des cellules de très grande taille par rapport aux autres cellules de l’individu. »

Max : « Bravo à tous les deux 🙂 « 

Léo : « Monsieur Max, en 6ème nous avons vu qu’il y avait fécondation de l’ovule par le grain de pollen chez les plantes à fleurs. Est-ce que chez les animaux il y a aussi fécondation ? »

Max : « Encore une excellente question ! C’est ce que je vais vous raconter aujourd’hui. Pas d’activité. Je raconte l’histoire. « 

II. LA FÉCONDATION.

En milieu aquatique, les gamètes sont libérés dans l’eau. Parfois ils sont libérés au hasard, d’autres fois, la femelle et le mâle les déposent au même endroit au même moment.

En milieu aérien, le mâle dépose ses spermatozoïdes dans la femelle grâce à un organe spécialisé (pénis, spermatophore…). Il y a nécessairement un coït (rapport sexuel).

Dans tous les cas il y aura fécondation. La fécondation est la rencontre suivie de la fusion d’un ovule et d’un spermatozoïde. Elle donne naissance à une cellule-œuf à l’origine d’un nouvel individu.

En milieu aquatique la fécondation est externe. En milieu aérien, la fécondation est interne.

Max : « Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max. »

Max : « Zutalor ! Il nous reste un peu de temps… Bon, je vais vous expliquer un peu mieux ce qu’il se passe lors de la fécondation… Tout d’abord regardons une photographie d’un ovule entouré de spermatozoïdes observés au microscope électronique… »

Photographie de la fécondation réalisée au microscope optique à balayage (fausses couleurs)

Max : « Nous voyons là des spermatozoïdes colorés en bleu autour de l’ovule coloré en jaune-orangé. Cette photographie permet de comparer les tailles des gamètes. Lorsque la membrane d’un spermatozoïde touche la membrane d’un ovule des mécanismes complexes se mettent en place et aucun autre spermatozoïde ne pourra entre en contact de l’ovule. Voici une autre photographie montrant la même chose… »

Photographie de la fécondation observée au microscope électronique à balayage.

Max : « Une fois qu’un spermatozoïde s’est fixé à la membrane de l’ovule, les deux membrane fusionnent et le noyau du spermatozoïde pénètre l’ovule qui devient une cellule-œuf ou zygote. Ensuite les deux noyaux, celui de l’ovule et celui du spermatozoïde, vont fusionner. »

Photographie des étapes de la fécondation.

Max : « Voilà ! La sonnerie a retenti. Vous pouvez aller vous aérer en récréation ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir 🙂 « 

Téléphores fauves in copula ( (c) Max Petitours)
Strangalies tachetées in copula ( (c) Max Petitours)
Azurés communs in copula ( (c) Max Petitours)

Séance suivante

Les gamètes

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits ! Qui pour le petit rappel ? »

Léo : « Moi monsieur Max ! Nous étudions la reproduction sexuée chez les animaux. Nous savons déjà qu’il faut un mâle et une femelle de la même espèce pour qu’il y ait reproduction sexuée. Le mâle doit donner des spermatozoïdes et la femelle doit donner des ovules. »

Samuel : « Parfois, il y a des hybrides entre espèces. Mais on en parle pas trop parce que sinon c’est compliqué. »

Max : » Je vois que vous connaissez bien vos leçons. Nous pouvons avancez tranquillement. Savez-vous à quoi ressemble les gamètes ? »

Léo : « Les gamètes ? Qu’est ce que c’est ? »

Max : « Les gamètes sont les cellules reproductrices. Chez le mâle c’est le spermatozoïdes et chez la femelle c’est l’ovule. »

Léo : « Merci monsieur Max. Ça va plus vite de dire gamète que ovule et/ou spermatozoïde. »

Max : « C’est le charme des mots Léo 🙂 Pour étudier les gamètes nous allons utiliser des oursins. Connaissez-vous les oursins ? »

Samuel : « Les oursins ? Comme les animaux avec des longs piquants qui piquent dans la mer ? »

Max : « Ça doit être ça 🙂 Voici l’espèce la plus commune. Il s’agit de l’oursin livide, Paracentrotus lividus (Lamarck, 1816). Vous avez peut-être déjà vu son test. C’est un peu comme une coquille… »

Oursin livide, Paracentrotus lividus (Lamarck, 1816) (source Wikipédia)
Test d’oursin livide, Paracentrotus lividus (Lamarck, 1816)

Max : « Vers le printemps, on peut voir des liquides sortir des oursins. »

Photographie d’oursins libérant leurs gamètes (source : Didier)

Samuel : « Ce sont les gamètes qu’on voit ? »

Max : « Oui Samuel. Nous observerons cela au microscope lors de la prochaine séance. Pour le moment, je vais vous montrer des gamètes humains. »

Samuel : « Monsieur Max, vous nous avez parlé des gonades. On pourrait voir les gonades des oursins s’il vous plaît ? »

Max  : « Bien sûr Samuel. Voici une photographie. »

Photographie d’oursins coupés en deux. On peut voir les gonades : oranges chez la femelle et jaune chez le mâle.

Léo : « Comment s’appelle les gonades monsieur Max ? »

Max : « Chez le mâle ce sont les testicules et chez la femelle ce sont les ovaires. Passons au gamètes. Ce sont des gamètes humains. Vous allez en réaliser des dessins en respectant les méthodes que vous connaissez déjà. Pour le moment, voici des photographies des gamètes.  »

Max : « Que voyez-vous ? »

Léo : « Le spermatozoïde est une cellule très particulière. Apparemment il est constitué d’une tête et d’un flagelle. Je suppose que le noyau est dans la tête. »

Max : « Tu supposes bien Léo. Il y a également un peu de cytoplasme dans la tête et le flagelle. Une cellule reproductrice reste une cellule. »

Samuel : « L’ovule est plus simple. C’est une sphère. Je ne comprends pas bien ce qu’il y a autour. »

Max : « C’est la zone pellucide. Elle protège l’ovule et est impliquée dans la fécondation. C’est compliqué. Vous verrez cela plus tard. »

Léo : « Il y a un noyau aussi dans l’ovule. Il fait quelle taille ? »

Max : « Ça dépend des espèces. En gros, son diamètre est égale à environ 1/10e de celui de l’ovule. J’ai oublié de dire… Le spermatozoïde est mobile. Il se déplace grâce aux mouvements de son flagelle. Regardez… »

Max : « Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max ! »

Max : »Très bien. Alors prenez vos cahiers et notez ! »

LES CARACTÉRISTIQUES DE LA REPRODUCTION SEXUÉE

Pour avoir une reproduction sexuée il faut un mâle et une femelle de la même espèce. (Espèce, fécond, stérile, hybride).

I. LES GAMÈTES.

Les gamètes sont les cellules reproductrices. Ce sont des cellules. On peut donc voir une membrane qui délimite un cytoplasme et elles ont un noyau.

Le spermatozoïde est une cellule spécialisée capable de se déplacer. Il est constitué d’une tête et d’un flagelle. Ce sont les mouvements du flagelle qui lui permettent d’avancer.

L’ovule est une cellule sphérique immobile.

Les gamètes sont produits dans les gonades. Les gonades sont les organes qui produisent les gamètes (ovaire chez la femelle et testicule chez le mâle).

Séance suivante

DM Commenter un graphique

Max : « Mes chers petits, nous avons déjà étudié deux graphiques. Mais vous savez que l’apprentissage est fondé sur la répétition. Pour vous aider à progresser je vais vous donner un devoir à faire à la maison. Il faut le faire sérieusement. Vous avez la méthode dans votre cahier et dans ce site (Commenter un graphique). Vous avez également deux exemples dans la partie exercice de votre cahier. Alors comment faire ? C’est très simple. Il faut bien étudier la méthode pour bien la comprendre. Puis il faut étudier les exercices qui sont dans le cahier et bien comprendre les réponses que vous avez soigneusement notées. Puis vous faites le devoir au brouillon. Ensuite, vous vérifiez grâce à la méthode et aux exemples déjà corrigés que vous avez bien travaillé. Vous pouvez alors recopier proprement votre travail sans oublier de bien présenter votre copie comme pour un devoir. Voilà 🙂 Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max ! « 

Max : « Alors voici le sujet. Ne le perdez pas ! »

Max : « Si par hasard vous perdiez ce sujet, vous pouvez le retrouver ici… »

DM graphique

Max : « Travaillez bien ! »

Samuel et Léo : « Oui monsieur Max ! Au revoir monsieur Max ! »

Séance suivante

L’absorption intestinale des nutriments 1

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Léo, peux-tu faire le petit rappel s’il te plaît ? »

Léo : « Je peux. Nous avons vu que le bol alimentaire avance dans le tube digestif. Son aspect change au fur et à mesure de son avancée. Il y a digestion des aliments. A la fin de la digestion l’intestin grêle contient une solution riche en nutriments et des restes non digérés. »

Samuel : « Monsieur Max, puis-je donner la définition de la digestion ? »

Max : « Si tu veux Samuel. »

Samuel : « La digestion est l’ensemble des transformations mécaniques (broyage) et chimiques (sucs digestifs) qui conduisent des aliments à une solution riche en nutriments. »

Max : « Très bien ! Nous allons étudier la suite. »

Léo : « Ben oui ! Parce que dans la fin de l’intestin grêle il y a la solution riche en nutriments. Elle est plutôt très liquide. Mais dans la fin du gros intestin, il n’y a que les excréments qui sont solides. On peut se demander où est partie la solution riche en nutriments ! »

Max : « C’est effectivement le problème que nous allons tenter de résoudre aujourd’hui. En deux étapes. Tout d’abord nous allons mettre en évidence la diminution de la quantité de nutriments dans les intestins grâce à un graphique. Puis nous verrons où ils sont passés grâce à la démarche expérimentale. »

Léo : « Les méthodes habituelles 🙂 Lire et commenter un graphique puis la démarche expérimentale 🙂 « 

Samuel : « On sait bien faire maintenant ! C’est facile ! »

Max : « Alors je vous distribue les sujets… Voilà ! Au travail ! »

Absorption intestinale des nutriments 1

Max : « Bien, c’est terminé ! Je ramasse les copies… Faisons une correction rapide. »

Le graphique représente l’évolution de la quantité de nutriments (en unité arbitraire) en fonction de la distance à la bouche (en cm.)

Dans l’œsophage la quantité de nutriments est nulle. Dans l’estomac elle augmente jusqu’à 60 unités arbitraires puis elle commence à diminuer. Dans les intestins, la quantité de nutriments diminue. Elle est presque nulle à la fin de l’intestin grêle.

La digestion est l’ensemble des transformations mécaniques et chimiques qui conduisent des aliments aux nutriments solubles. Quand un aliment est digéré la quantité de nutriments solubles augmente. Or on voit que c’est dans l’estomac que la quantité de nutriments augmente. On peut en déduire que c’est dans l’estomac que la digestion a lieu.

Max : « Avez-vous des questions ? »

Léo : « Non monsieur Max. »

Samuel : « C’était facile ! »

Max : « Alors vous pouvez ranger vos affaires et allez vous dégourdir les pattes en récréation ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante

L’anatomie de l’appareil digestif 2

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Alors… Tiens, Samuel, le petit rappel s’il te plaît. »

Samuel : « Je vais résumer un peu. Nous étudions la fonction de nutrition chez les animaux ayant une bouche et un anus. Nous avons vu que chez ceux qui ont des dents, la denture est adaptée au régime alimentaire. C’est pratique pour nous comme ça, quand on trouve une mâchoire ou un crane, on peut savoir ce que mangeait l’animal sans savoir qui c’est 🙂 « 

Max : « Merci Samuel. Léo, je t’écoute pour la suite. »

Léo : « Ensuite nous avons vu que les animaux ayant une bouche et un anus sont traversés par un long tuyau appelé tube digestif. Il commence par la bouche puis se prolonge par l’œsophage, l’estomac, l’intestin grêle et le gros intestin. Il se termine par l’anus. Et parfois il y a un cæcum. Et puis ce qui entre par la bouche, c’est pas pareil que ce qui sort par l’anus. D’un côté il y a les aliments et de l’autre les excréments. Entre les deux ça se transforme. »

Max : « Encore une fois vous connaissez très bien vos leçons. Je suis fier de vous. »

Léo : « Merci monsieur Max. Mais j’ai une question. Lors de la séance précédente nous avons vu le tube digestif. Mais en plus il y avait le foie. Nous n’avons pas parlé du foie. »

Samuel : « Et si je dis pas des erreurs, il y a également les glandes salivaires dans la bouche. Elles produisent de la salive. »

Léo : « A quoi servent ces organes monsieur Max ? »

Max : « Toujours les bonnes questions au bon moment 🙂 Avant de voir à quoi servent ces organes je vous propose de les découvrir ainsi que d’autres dont vous n’avez pas parlé. Nous saurons alors ce qu’est l’appareil digestif. »

Léo : « Vous allez nous donner une activité ? »

Max : « Oui mes petits. »

Samuel : « Chouette alors ! On va découvrir tout seul ! »

Max : « Voici le sujet. Au travail ! »

Les glandes digestives et l’appareil digestif

Max : « Vous avez terminé ? Montrez moi votre travail… C’est très bien ! Bravo ! Nous pouvons corriger. »

2. Les glandes digestives.

Les glandes digestives sont des organes qui produisent les sucs digestifs indispensables à la digestion des aliments.

L’appareil digestif est constitué du tube digestif et des glandes digestives qui produisent les sucs digestifs.

Max : « Voilà ! Nous avons terminé et vous savez maintenant ce que vous avez dans le ventre 🙂 Vous devriez maintenant réussir à localiser ces organes dans votre propre corps. »

Léo : « Ben oui ! Là c’est mon estomac, là mon intestin grêle… »

Samuel : « Le gros intestin est là. Il remonte sur le côté droit, fait une branche horizontale en haut de l’abdomen puis il descend du côté gauche avant de se diriger vers l’arrière. »

Max : « C’est bien mes petits. Avez-vous des questions ? »

Samuel : « Monsieur Max, nous n’avons toujours pas parlé du cæcum ! »

Max : « La prochaine fois Samuel. C’est promis. »

Samuel : « Alors je n’ai pas de question. »

Léo : « Moi non plus. »

Max : « Alors filez vous dégourdir les pattes en récréation. »

Samuel et Léo : « Au revoir monsieur Max. »

Max : « Au revoir mes petits. »

Nutrition 1-2 GD

Séance suivante

Anatomie de l’appareil digestif 1

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Samuel, veux-tu faire le petit rappel s’il te plaît ? »

Samuel : « Je veux bien 🙂 Nous avons revu les régimes alimentaires. Il y a les phytophages, les zoophages et les omnivores. Puis nous avons vu que la denture dépend du régime alimentaire. »

Max : « Oui Samuel. Léo, les définitions de phytophage et de zoophage s’il te plaît. »

Léo : « Un phytophage est un animal qui se nourrit de matière organique d’origine végétale. Un zoophage se nourrit de matière organique d’origine animale. Il y a aussi les omnivores qui se nourrissent de matière organique d’origine végétale et animale. »

Max : « Bien Léo. Samuel, parle nous un peu des dentures. »

Samuel : « Il y a quatre types de dents : les incisives, les canines, les prémolaires et les molaires. Chez les zoophages les canines sont longues et pointues. Ce sont les crocs. Et les molaires sont tranchantes. Chez les phytophages, il n’y a pas de canines mais une barre sans dent. Les molaires sont larges et pleines de reliefs pour broyer les végétaux. Les incisives sont développées chez les rongeurs mais parfois, chez les pas rongeurs, elles n’existent même pas. »

Max : « Bravo à tous les deux ! Vous connaissez bien vos leçons ! Nous pouvons avancer. Il me semble que je vous avais annoncé les problème que nous allions résoudre. Vous souvenez-vous ? »

Léo : « Nous voulons savoir par où passe les aliments entre la bouche et l’anus ! »

Max : « Oui Léo. Comment pouvons-nous faire pour savoir ? »

Samuel : « Nous pourrions découper un animal pour voir comment il est fait en dedans. »

Léo : « Ça s’appelle une dissection ! »

Samuel : « Nous allons vraiment disséquer un animal ? »

Max : « Ce serait intéressant de voir réellement mais je n’aime pas trop tuer les animaux. Même pour faire avancer la science. Observons plutôt des photographies en commençant par celle d’un lapin disséqué. »

Léo : « Oulala ! C’est pas très ragoutant ! »

Samuel : « Nous aussi on est comme ça dedans ? »

Max : « Pas tout à fait. Je vous expliquerai les différence plus tard. Pour le moment pouvez-vous m’indiquer le trajet des aliments entre la bouche et l’anus ? »

Léo : « Ben non ! On ne voit pas la bouche ! »

Max : « Exact Léo ! Disons qu’après la bouche il y a l’œsophage qui arrive à l’estomac. »

Samuel : « Alors les aliments passent par la bouche, l’œsophage, l’estomac, l’intestin grêle et le gros intestin et les excrément passent par l’anus. Il y a aussi le cæcum mais je ne sais pas si les aliments passent dedans parce que c’est un peu sur le côté. »

Max : « Bonne réponse Samuel. Pour voir si vous avez compris vous allez légender le dessin de la dissection d’un appareil digestif de souris. »

 

 

 

 

 

 

 

 

 

 

 

 

 

Dessin de la dissection de l’appareil digestif de la souris

Max : « Très bien mes petits ! Comparons ces deux appareils digestifs. »

Léo : « Chez le lapin le cæcum est bien plus grand que chez la souris ! »

Samuel : « Les intestins semblent plus longs chez le lapin que chez la souris aussi ! »

Léo : « Par contre j’ai l’impression que l’estomac est plus grand chez la souris que chez le lapin ! »

Max : « Quels bons observateurs vous êtes mes petits ! Bravo à vous ! Avant de noter la leçon, revenons au lapin et regardons le contenu des organes dont vous avez parlé. »

Samuel : « Dans la bouche il y a des aliments broyés mélangés à la salive. »

Léo : « C’est un peu pareil dans l’estomac. Mais chez les humains, ça dépend du temps qui a passé depuis qu’on a avalé les aliments. Je le sais à cause du vomi. »

Samuel : « Oui ! Quand on vomit juste après manger ça ressemble un peu à ce qu’on a mangé. Mais au bout de quelques heures c’est une espèce de bouillie très liquide qui sent pas bon ! »

Max : « C’est vrai 🙂 « 

Samuel : « Dans l’intestin grêle c’est très liquide ! Il n’y a presque plus de morceaux. »

Léo : « Et dans le gros intestin ça ressemble de plus en plus à des excréments. En fait, on ne devrait pas parler du trajet des aliments parce que très rapidement ce ne sont plus des aliments… »

Max : « C’est vrai Léo. Nous parlerons du bol alimentaire puis d’excréments. Bien, nous pouvons noter la leçon. »

II. ANATOMIE DE L’APPAREIL DIGESTIF.

L’anatomie est la science qui étudie la disposition des organes.

1. Le tube digestif.

Les aliments sont avalés. Ils sont rapidement transformés en bol alimentaire. Le bol alimentaire avance dans l’œsophage, l’estomac, l’intestin grêle, le gros intestin et les excréments sont évacués par l’anus. Ces organes constituent le tube digestif.

Le tube digestif est un long tuyau allant de la bouche à l’anus et comprenant l’œsophage, l’estomac, l’intestin grêle, le gros intestin et le cæcum. Il se termine par l’anus.

Le tube digestif n’est pas exactement le même selon les régimes alimentaires. Les rongeurs ont un cæcum très développé et des intestins très longs. Chez les zoophages l’estomac est plus développé.

Max : « Avez-vous des questions ? »

Samuel : « Oui monsieur Max ! A quoi sert le cæcum ? »

Max : « Bonne question. C’est ce que nous verrons bientôt. Si vous n’avez pas d’autres questions vous pouvez ranger vos affaires et sortir vous dégourdir les pattes ! »

Samuel : « D’accord. Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Photo d’illustration d’une grenouille et d’une souris disséquées. (FlickrCC/Estonia76)

Nutrition 1-1 TD

Séance suivante

L’approvisionnement du sang en nutriments

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits ! Commençons par un petit rappel. Qui peut me dire de quoi les organes ont besoin pour fonctionner ? »

Samuel et Léo : « Moi ! Moi ! »

Max :  » 🙂 Commençons par Samuel. »

Samuel : « Les organes ont besoin de dioxygène et de glucose qu’ils prélèvent dans le sang. Avec le dioxygène et le glucose les organes produisent de l’énergie. La production d’énergie s’accompagne de la production de déchets comme le dioxyde de carbone et l’eau qui doivent être rejetés dans le sang. »

Max : « Très bien Samuel. »

Léo : « Monsieur Max, quand le sang est passé par un organe, il contient moins de dioxygène et de glucose qu’avant son arrivée. Comment il fait, le sang, pour se recharger en dioxygène et en glucose ? »

Samuel : « Et pour se débarrasser de ses déchets ? »

Max : « Excellentes questions ! Pour y répondre nous allons entamer une série de chapitres. Nous verrons d’abord comment le sang est réapprovisionné en glucose. Puis, rapidement, comment il est réapprovisionné en dioxygène. Ensuite nous verrons comment les déchets sont évacués du corps. »

Léo : « Tout ça ! »

Max : « Et la circulation sanguine 🙂 Puis, nous verrons ce qu’il se passe chez les végétaux. Commençons par l’apport de glucose ou de nutriments. Léo, peux-tu nous rappeler ce qu’est un nutriment ? »

Léo : « Je peux 🙂 Un nutriment est une substance provenant des aliments qui est directement utilisable par les cellules. »

Max : « D’après vous, d’où viennent les nutriments ? »

Samuel : « C’est dans la définition ! Les nutriments viennent des aliments ! Pour avoir des nutriments comme le glucose il faut se nourrir ! »

Léo : « Sinon on a plus d’énergie et on fait l’hypoglycémie ! »

Max : « Exact. Je tiens à préciser que nous allons étudier la fonction de nutrition chez les animaux qui ont une bouche et un anus. »

Samuel : « Il y a des animaux qui n’ont ni bouche ni anus ? »

Max : « Il y en a 🙂 Parfois il n’y a qu’un seul orifice, parfois il n’y en a aucun. »

Léo : « Ben oui ! Les éponges par exemple ! Ce sont des animaux qui ont ni bouche ni anus ! »

Samuel : « Les coraux aussi ! »

Max : « Et il y en a d’autres… Nous verrons cela en faisant une classification sous forme de groupes emboîtés des animaux sans bouche ni anus. Pour le moment revenons à nos animaux ayant bouche et anus. Que pouvez-vous me dire sur la nutrition ? »

Léo : « Tous les animaux ne mangent pas la même chose ! Nous avons vu l’an dernier les phytophages, les zoophages et les omnivores ! »

Max : « Oui, et vous reverrez les définitions pour la prochaine fois 🙂 (C’est ici pour réviser.) Quoi d’autre ? »

Samuel : « Beaucoup d’animaux ont des dents ! »

Léo : « Pas les oiseaux ! Les oiseaux ont des becs sans dents ! »

Max : « Nous allons étudier la denture et peut-être les becs. »

Léo : « D’abord, on mâche puis on avale les aliments. Ensuite je ne sais pas bien par où ça passe. On digère et puis… »

Max : « Et puis ? »

Léo : « Je ne sais pas comment dire… Après on fait caca. »

Max :  » Nous dirons que l’on défèque 🙂 Si je résume ce que vous m’avez dit ça donne : des aliments entrent par la bouche puis ils sont digérés. Plus tard, des excréments sortent par l’anus. Quelles sont les questions que cette simple phrase soulève ? »

Samuel : « Des aliments entrent par la bouche et des excréments sortent par l’anus… Par où ça passe entre la bouche et l’anus ? »

Max : « Oui Samuel. Bonne question. »

Léo : « Des aliments et des excréments c’est pas pareil. Quelles sont les transformations que subissent les aliments ? »

Max : « Très bonne question également ! »

Léo : « Et puis si on mange et qu’on digère c’est pas seulement pour transformer les aliments en excréments. On doit bien garder quelque chose… »

Samuel : « Ben oui ! On garde les nutriments ! On peut se demander comment ils font pour passer dans le sang ! »

Max : « Bravo ! Vous êtes de bons petits scientifiques ! Vous posez les bonnes questions sans prétendre tout savoir ! C’est très bien. Nous pouvons donc notre l’introduction de notre chapitre. Prenez vos cahiers… »

LA NUTRITION DES ANIMAUX

Chez les animaux qui ont une bouche et un anus, les aliments sont prélevés par la bouche qui, souvent possède des dents. Puis ils sont avalés et transformés. Plus tard, des excréments sont évacués par l’anus. On dit qu’ils sont déféqués.

Max : « Avez-vous des questions ? »

Léo : « Ben non. Le chapitre va y répondre 🙂 « 

Max : « C’est juste Léo. Alors vous pouvez ranger vos affaires et aller dépenser de l’énergie en récréation ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante

Dérive des continents ou tectonique des plaques ?

Max : « Nous voici dans un nouveau complément 🙂 « 

Léo : « On aime bien les compléments nous 🙂 « 

Max : « Tant mieux. Vous me parliez de dérive des continents alors que je vous enseignais la tectonique des plaques. Voyons les différences. La dérive des continents est une intuition géniale d’un scientifique allemand du début du 20ème siècle : Alfred Wegener. C’était un astronome et météorologue. »

Samuel : « Il n’était pas géologue ? »

Max : « Non. Et ce fut un problème. Retournons au début du 20ème siècle. La météorologie n’est pas du tout précise et Wegener se lance dans des explorations du globe afin d’accumuler les observations dans l’espoir de réussir à affiner les modèles de prévisions météorologiques. Et c’est un esprit curieux. Ses observations ne se limitèrent pas à la météo. »

Léo : « Qu’a-t-il observé d’autre ? »

Max : « Des tas de choses. Des fossiles par exemple. Il a remarqué, mais il n’était pas le seul, que les aires de répartition de certains fossiles datés de 260 à 240 millions d’années avant nos jours étaient difficiles à expliquer. »

Samuel : « Quels sont ces fossiles ? »

Max : « Il y a 4 exemples classiques. Commençons par le mésosaure. C’est un ‘reptile’ d’eau douce qui pouvait atteindre un mètre de long. Regardez.

Max : « Ses fossiles s’observent au sud-est de l’Amérique du sud et au sud-ouest de l’Afrique. Le lystrosaure et le cynognathus ont également des aires de répartition assez étranges. »

Lystrosaurus

Cynognathus

Max : « Ce sont deux animaux terrestres. Le cynognathus s’observe lui aussi en Amérique du sud et en Afrique du Sud, un peu au nord des sites où ont été retrouvés les fossiles des mésosaures. Le cynognathus se retrouve aux mêmes endroits mais aussi en Inde et en Antarctique. »

 

Léo : « C’est étrange. Surtout pour des animaux d’eau douce ou terrestres. »

Samuel : « Ils n’ont pas pu traverser l’Atlantique à la nage ! »

Max : « C’est encore plus étrange pour des plantes ! On retrouve des fossiles de glossoptéris un peu partout dans l’hémisphère sud. »

Photographie de feuilles fossilisées de glossopteris

Carte de répartition mondiale de fossiles de 4 espèces

Léo : « Vous avez déjà remarqué que les côtes de l’Afrique et de l’Amérique du sud semblent bien s’emboîter ? « 

Samuel : « Ça m’a toujours surpris. »

Léo : « Si on les emboîte les aires de répartitions des fossiles semblent bien plus logiques ! »

Max : « C’est aussi ce que s’est dit Wegener. Regardez ce que ça donne. »

Samuel : « Tous les continents sont emboîtés ! »

Léo : « Ça marche bien… »

Max : « On appelle ce vaste continent ‘Pangée’ ce qui signifie ‘toutes les terres’.

Léo : « Et la Pangée explique d’autres faits ? »

Max : « Oui Léo. Certaines roches qui s’observent de part et d’autres de l’Atlantique par exemple. Voyons ça… »

Max : « Nous voyons qu’une vaste chaîne de montagne érodée se retrouve de part et d’autre de l’Atlantique. Une partie est appelée Appalaches et l’autre Mauritanides. »

Léo : « Ça alors ! Le plus étonnant est qu’une chaîne de montagnes montre qu’il y a eu collision de deux lithosphères continentales. Et là, la divergence a eu lieu dans la chaîne de montagnes ! »

Max : « Oui Léo. C’est le seul cas que je connaisse… »

Samuel : « Il y a autre chose encore ? »

Max : « Des traces de glaciation. Vous savez sûrement que les glaciers se déplacent. S’ils reposent sur des cailloux ou des rochers mobiles, ces rochers avancent eux aussi mais comme ils sont écrasés ils griffent les roches sur lesquelles ils avancent. On parle de stries glaciaires. Wegener en a observé beaucoup dans l’hémisphère sud. Et encore une fois, elles ne s’expliquent qu’en rassemblant les continents actuels en la Pangée. »

Max : « A partir de toutes ces observations Wegener a donc proposé la Pangée et la dérive des continents. Mais il n’a eu aucun succès. »

Léo : « Pourquoi ? »

Max : « Pour deux raisons qui sont évidemment liées. La première est qu’il n’était que météorologue. Une science qui n’était pas vraiment prise au sérieux à l’époque. Les géologues qui se prenaient pour de vrais scientifiques n’ont pas apprécié que ce ne fut pas l’un des leurs qui propose cette intuition. Et puis Wegener ne proposait pas d’explication. Il n’avait pas de théorie. »

Samuel : « Qu’est ce qu’une théorie monsieur Max ? »

Max : « La vérité pour un scientifique 🙂 Une théorie… Je vais vous donner trois des définitions les plus unanimement acceptées actuellement. »

Selon André Lalande (1991), une théorie scientifique est une large synthèse se proposant d’expliquer un grand nombre de faits.

Selon Robert Nadeau (1999) une théorie est un système intellectuel provisoire et révisable, utilisé comme moyen de coordonner, calculer, interpréter, comprendre, expliquer et prédire.

Selon Karl Popper (1902-1994) il s’agit d’un système formé d’énoncés synthétiques universels permettant, à l’aide de conditions initiales appropriées, de fournir une explication causales de faits exprimés par des énoncés singuliers, ou d’en effectuer la prédiction.

Léo : « Je ne comprends pas tout… Une théorie doit expliquer des faits et faire des prédictions. C’est ça ? »

Max : « C’est une version simple mais compréhensible. »

Samuel : « Je vois ! Wegener dit que les continents ont dû se déplacer pour expliquer les observations qu’il a faites. Mais il ne dit pas comment ils bougent. Alors ce n’est pas une théorie. »

Max : « Exact Samuel ! Mais c’est une intuition géniale ! Et c’est pour cela que les autre scientifiques l’ont détesté ! Il a eu cette intuition et, plein d’humilité, il leur a demandé de l’expliquer. »

Samuel : « Et la théorie de la tectonique des plaques, qui l’a inventée ? »

Max : « Il a fallu du monde 🙂 C’est une accumulation de publications qui a mené à cette théorie. Si je devais garder un nom… Je dirais Xavier Le Pichon dans les années 1980. 1986 il me semble. »

Léo : « Il aura fallu 70 ans pour comprendre ! »

Max : « Pour comprendre en partie. Nous ne savons pas tout encore ! Il reste du travail. Je vais reprendre cette théorie en un schéma. Vous êtes prêts ? »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Il y a beaucoup de chaleur au centre de la Terre. Elle provoque des mouvements dans le manteau. On parle de cellules de convection. Ces mouvements se font à l’état solide. Ils sont à l’origine de la divergence des plaques et donc du fonctionnement des dorsales. Au niveau de la dorsale il y a fusion, formation de magma et volcanisme. Mais si de la lithosphère se crée, il faut qu’il en disparaisse. C’est ce qu’il se passe au niveau des fosses. Voilà, vous savez tout. »

Léo : « C’est pas très difficile en fait. »

Samuel : « Ben non. Dites monsieur Max, vous nous avez bien dit que vous ne deviez parler que de la lithosphère et de l’asthénosphère n’est ce pas ? »

Max : « Oui Samuel. »

Samuel : « Mais ce n’est pas possible d’expliquer la théorie de la tectonique des plaques avec si peu d’informations ! On ne peut rien expliquer ! »

Max : « Tu as compris mon problème Samuel. Soit je ne fais que ce qu’il m’est demandé et vous ne pouvez pas comprendre. Soit je vous explique et nous prenons du retard dans le programme. »

Léo : « Vous nous avez expliqué et nous vous en remercions monsieur Max. »

Samuel : « Tant pis si on ne voit pas tout. L’essentiel est de comprendre ce qu’on fait. »

Max : « Merci mes petits. Loin de moi l’idée de vous chasser mais il me semble que la sonnerie a retenti. »

Léo : « Alors on file ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante

La convergence des plaques

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Voudriez-vous que je continue à vous raconter l’histoire des océans ? »

Samuel : « Oh oui ! »

Léo : « Oui monsieur Max. Je me demandais justement… La Terre ne grandit pas ? »

Max : « Non Léo. »

Léo : « Alors si les plaques s’écartent quelque part, il faut nécessairement qu’elles se rapprochent ailleurs. »

Max : « Oui Léo. Et c’est ce que j’allais vous expliquer. »

Samuel : « Nous écoutons. »

Max : « Reprenons la dernière étapes de l’ouverture d’un océan. »

Max : « Observez bien ce qu’on appelle la marge c’est-à-dire la zone de contact entre la lithosphère océanique et la lithosphère continentale. »

Léo : « On passe du vert à l’orange. »

Samuel : « Monsieur Max, qu’est-ce que c’est le jaune ? »

Max : « Les dépôts sédimentaires. Les sédiments viennent de l’érosion des roches des continents. Ça peut être de l’argile, du sable… Ici ce n’est qu’un détail. »

Samuel : « D’accord. Merci monsieur Max. »

Max : « Revenons à notre marge. Au bout d’un moment, 180 millions d’années ou plus, elle se détache. Il y a une cassure entre la lithosphère océanique et la lithosphère continentale. Et comme la lithosphère océanique est très dense, elle commence à s’enfoncer. »

Léo : « Et au niveau de la dorsale ça continue à pousser ! »

Max : « Et oui ! Par conséquent la plaque tout à gauche, continentale ne bouge plus, mais la lithosphère océanique avance encore. Et elle s’enfonce sous la lithosphère continentale. C’est la subduction océanique. »

Léo : « Auriez-vous un schéma ? »

Max : « Pas tout de suite. J’ai une vidéo 🙂 »

Vous pouvez comprendre que la lithosphère océanique plonge sous la lithosphère continentale. Évidemment, elle s’enfonce par à-coups et chaque à-coup s’accompagne de séismes. Et en s’enfonçant, elle s’échauffe et fond en partie. Un magma visqueux se forme et il est à l’origine d’un volcanisme explosif. Maintenant je peux vous montrer. »

Samuel : « Monsieur Max, ça ne devrait pas s’enfoncer un peu plus juste avant la lithosphère continentale ? »

Max : « Pourquoi dis-tu ça Samuel ? »

Samuel : « Pour expliquer les fosses océaniques. »

Max : « Excellente remarque Samuel ! Si, cela devrait ! »

Léo : « Alors on sait pourquoi il y a des séismes et des volcans  en Amérique du sud côté Pacifique. C’est la plaque Nazca qui plonge sous la plaque sud-Américaine. »

Samuel : « Monsieur Max, et les arcs insulaires ? Il n’y a pas de continent au niveau des arcs insulaires ! »

Max : « exact Samuel ! C’est un cas particulier de subduction, quand une lithosphère océanique plonge sous une autre plaque océanique. Regardez. »

Samuel : « Là on voit bien la fosse ! »

Max : « Oui Samuel. Petite précision. Les foyers des séismes ne peuvent être que dans la lithosphère. L’asthénosphère est trop molle pour casser. »

Léo : « Alors les séismes sont de plus en plus profond comme on l’a observé ! »

Samuel : « Monsieur Max, au bout de la lithosphère océanique il y a la lithosphère continentale. Que se passe-t-il quand elle arrive contre l’autre lithosphère continentale ? »

Max : « Il y a collision continentale ! »

Léo : « Boum les plaques ! »

Léo : « Là elles font pas boum les plaques ! »

Max :  » 🙂 Ça vient 🙂 « 

Max : « C’est un peu schématique… »

Léo : « Ça nous suffit. »

Samuel : « Nous avons compris. »

Max : « Tant mieux 🙂 Alors notons une courte leçon. »

IV. LA CONVERGENCE DES PLAQUES.

Lors d’un convergence, une lithosphère océanique va plonger sous une lithosphère océanique ou sous une lithosphère continentale. Dans les deux cas on parle de subduction. La plongée de la lithosphère océanique crée la fosse océanique et s’accompagne de séismes de plus en plus profonds. Lors de sa plongée la lithosphère océanique fond en partie. Un magma apparaît. Il est à l’origine des volcans explosifs.

Au bout d’un moment, deux lithosphères océaniques entrent en collision et il se forme une chaîne de montagnes.

Max : « Voilà mes petits ! Vous savez tout de l’ouverture et de la fermeture d’un océan. Avant de terminer je voudrais vous montrer une petite animation. »

Paleomaps

Léo : « On a remonté le temps ! »

Samuel : « Puis c’est reparti dans l’autre sens ! »

Léo : « Et on sait comment ça va être ! »

Samuel : « Monsieur Max, c’est ça qu’on appelle la dérive des continents ? »

Max : « Excellente question Samuel ! Si tu ne l’avait pas posé j’allais vous annoncer que nous avions terminé la géologie ! »

Samuel : « Zutalor ! »

Max : « Je vais vous faire un autre complément 🙂 A tout de suite 🙂 « 

Doc convergence

Un autre complément

Séance suivante

La divergence des plaques

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. »

Léo : « Monsieur Max, on peut vous demander quelque chose ? »

Max : « Vous pouvez, bien sûr. »

Samuel : « Nous aimerions que vous nous racontiez l’histoire des océans. »

Léo : « On a vu qu’il s’ouvraient les océans. Alors on s’est dit qu’avant ils existaient pas. »

Samuel : « Et on aimerait que vous nous racontiez l’histoire. »

Léo : « Vous voulez bien ? »

Max : « Vous travaillez bien. Vous êtes attentifs. Vous méritez bien de vous reposer un peu. Je vais donc satisfaire votre demande. Mais d’abord je dois faire un petit rappel. Souvenez vous que la lithosphère repose sur l’asthénosphère. Toute cela correspond aux 700 km les plus externes du manteau qui a, à sa base, la petite couche D ». »

Samuel : « Et encore dessous il y a le noyau externe liquide et le noyau interne solide. »

Max : « Oui Samuel. Chose étrange, l’histoire d’un continent débute au sein d’un continent. Ou plutôt profondément sous un continent. De la chaleur va du centre de la Terre vers l’extérieur. Plus précisément, elle vient de la petite couche D ». La concentration de chaleur conduit à une remontée du manteau à l’état solide. »

Samuel : « A l’état solide ? »

Max : « Oui Samuel. Le manteau remonte à l’état solide et va s’accumuler sous la lithosphère qui se bombe. Je peux vous montrer un modèle de ce qu’il se passe. Mais avec des liquides. Regardez ça. »

Léo : « C’est ça qu’il se passe dans la Terre ? »

Max : « Oui Léo. Mais à l’état solide. »

Léo : « Rholala ! Mais ça doit prendre du temps ! »

Max : « Le panache mantellique remonte en plusieurs dizaines de millions d’années.

Samuel : « On voit que la couche rouge descend le long des parois. »

Léo : « On ne voit pas bien mais elle doit s’écarter à l’endroit où l’équivalent du panache mantellique arrive à la surface. Il se pousse sur les côtés et entraîne la couche rouge sur les côtés. »

Samuel : « Il y a donc divergence des plaques au centre et convergence sur les bords. Sauf que ce ne sont pas des plaques lithosphériques. »

Max : « Vous avez tout compris 🙂 Revoyons cela en détail si vous le voulez bien. »

Léo : « Nous voulons bien. »

Max : « Léo, tu supposais que la couche rouge en surface devait s’écarter. Modélisons un écartement. Ce n’est pas vraiment possible de le faire avec du liquide. Je prendrais donc des poudres de couleurs différentes que je disposerai en couches alternées puis je modéliserai une divergence. Voilà ce que ça donne… »

Samuel : « On voit des failles apparaître ! Dans la réalité elles doivent s’accompagner de séismes superficiels ! »

Léo : « Puis les blocs s’enfoncent un peu au centre et il y a comme des crêtes sur les côtés ! »

Samuel : « Ce n’est pas ce qu’il se passe en ce moment dans le rift Est-Africain ? »

Max : « Si Samuel. Regardez ça. »

Photographie d’une faille en extension dans la région de l’Afar qui prolonge le rift est-africain au nord.

Léo : « C’est comme le modèle ! »

Max : « Et c’est comme ça tout le long du rift. »

Carte montrant la localisation du rift Est-Africain

Samuel : « Mais le long du rift, il y a du volcanisme. Comment explique-t-on ce volcanisme ? »

Max : « Faisons un autre modèle. Je vous montre puis nous en discuterons. « 

Léo : « Il y a un problème avec le basalte. Il vient d’où en vrai ? »

Max : « C’est le panache mantellique qui remonte. Il est solide au début. Mais vous avez sûrement remarqué que lorsque les roches s’écartent elles deviennent de plus en plus fines. »

Samuel : « Oui. Et à la fin elles sont tellement fines qu’elles ne sont plus là 🙂 »

Léo : « Mais oui ! Vous nous aviez dit que l’épaisseur de la lithosphère pouvait être nulle ! Pas de lithosphère du tout ! C’est ça ! »

Max : « Exact ! Comme il n’y a plus de roches au-dessus de l’asthénosphère, elle fond. La physique l’explique bien. Imaginons un solide très chaud mais sous pression. Il reste solide. Mais si on fait baisser la pression, il fond. »

Samuel : « Là ça donne un magma qui deviendra du basalte. »

Max : « Vous comprenez tout 🙂 »

Léo : « Ce qu’il y a de bien avec ce que vous racontez c’est que ça explique toutes les observations que nous avons faites lors des deux premiers chapitres. Il y a des failles en extensions, des séismes superficiels et du volcanisme effusifs. »

Samuel : « Et nous savons que les continents s’écartent. Nous l’avons mesuré ! »

Max : « C’est le principe de la théorie mes petits. Une théorie explique les faits. »

Léo : « Rholala c’est drôlement bien la science 🙂 »

Max : « Ce constat me ravit 🙂 Bien reprenons un peu. J’en étais donc à la remontée du panache mantellique sous la lithosphère. Le magma s’accumule sous la lithosphère qui se bombe. Cette déformation de la lithosphère va faire apparaître des failles. Il y a donc des petits séismes superficiels. Mais le manteau qui est remonté ne peut pas s’accumuler indéfiniment sous la lithosphère. Il va s’écouler sur les côtés. C’est l’asthénosphère qui se déplace, entraînant la lithosphère. La divergence commence. Les failles s’écartent et la pression sur les roches en dessous diminue ce qui provoque la fusion partielle du manteau. Un magma apparaît et le volcanisme commence. « 

Max : « La lithosphère s’étire. Il y a un effondrement en escaliers qui forme un rift. Le magma s’infiltre de plus en plus et le volcanisme s’intensifie. Nous en sommes au stade du rift continental. C’est ce qui est en train de se passer en Afrique de l’ouest. »

Max : « Ensuite les plaques lithosphériques continuent de diverger.  Le rift s’enfonce en dessous du niveau de la mer qui l’envahit. Le volcanisme est de plus en plus intense et une croûte basaltique se met en place en occupant l’espace laissé entre les deux morceaux de lithosphère qui continuent de s’écarter. Il y a maintenant deux plaques séparées par une dorsale. Nous sommes au stade océan étroit également appelé stade Mer Rouge. »

Léo : « Alors la Mer Rouge est un océan tout jeune ! »

Samuel : « Je comprends la différence entre les mers et les océans maintenant ! Au fond d’un océan il y a une dorsale et donc du volcanisme ! Et l’océan grandit ! Pas la mer ! »

Max :  » Vous comprenez vraiment tout 🙂 La divergence continue et de la lithosphère océanique continue de se former. C’est le stade océan Atlantique. C’est comme cela que de la nouvelle lithosphère océanique se forme au niveau des dorsales. Voilà mes petits. C’en est fini pour la divergence des plaques. »

Samuel : « Merci monsieur Max. »

Max : « Il faut quand même que nous écrivions une leçon. Prenez vos cahiers et notez. »

III. LA DIVERGENCE DES PLAQUES.

La divergence commence au sein d’un continent. Le manteau, chauffé par en dessous remonte. Il s’accumule puis s’écoule sur les côtés. L’asthénosphère s’écarte en entraînant la lithosphère. Un rift apparaît. Le manteau fond et donne un magma fluide à l’origine de volcans effusifs. A chaque mouvement un séisme superficiel se produit.

Si la divergence continue une dorsale apparaît et sépare deux plaques lithosphérique. De la lithosphère océanique se met en place. C’est le stade océan étroit illustré actuellement par la Mer Rouge. Puis l’océan s’élargit et on arrive au stade océan Atlantique.

Max : « Je vous ferai une fiche. Pour le moment, allez chahuter un peu. Vous êtes un peu trop sages à mon goût 🙂 « 

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Doc divergence

Séance suivante

Sources : Pierre-André Bourque

Merci à toi qui souris tout le temps. Ton travail m’a bien aidé. Surtout à me remotiver à écrire.