Observation de microbes au microscope optique

Bonjour à tous !

Aujourd’hui je vais vous expliquer comment réussir à observer quelques microbes non-pathogènes au microscope optique. Je vous propose d’observer les bactéries du yaourt, des levures de boulanger, les moisissures d’un fromage et nous allons essayer d’observer les bactéries de votre bouche. Oui, il y en a 🙂

Les bactéries du yaourt

Le yaourt est un produit fermenté d’origine animale à base de lait, sa fabrication fait intervenir deux bactéries lactiques Lactobacillus bulgaricus et Streptococcus thermophilus dont l’action conduit à la formation de l’acide lactique à partir du lactose. Si votre observation est réussie vous devriez donc observer deux espèces bactériennes.

Pour cette manipulation j’ai un problème. J’ai plusieurs protocoles pour la réalisation de la préparation microscopique et je ne me souviens plus lequel donne les meilleurs résultats. Vous allez m’aider. Vous allez suivre ces trois protocoles et vous me direz lequel fonctionne le mieux. Je compte sur vous !

TP Microbes Bactéries du yaourt

Photographie des bactéries du yaourt après coloration au bleu de méthylène.
Les levures de boulanger

Il faut préalablement réaliser une suspension de levure. Pour cela il faut mélanger 1 gramme de levure fraîche de boulanger avec 100 mL d’eau tiède et 1 gramme de glucose puis laisser reposer une heure. On peut également observer directement la levure. 

Photographie de levure de boulanger observées au microscope.
Moisissures du fromage

Beaucoup de fromages sont fabriqués grâce à des champignons microscopiques appartenant au groupe des moisissures. C’est le cas du roquefort. La moisissure qui permet de l’obtenir est spécifique des grottes de la région de Roquefort. Il s’agit du Penicillium roquefortii.

Photographie de Penicillium roquefortii observé au microscope
Epithélium buccal

L’épithélium buccal est la couche la plus superficielle de la joue. Il est facile d’en prélever des cellules sans douleur. Au passage, on récolte des bactéries.

Photographie de cellules d’épithélium buccal observées au microscope.

TP Observation de microbes au microscope

 

 

La taille des microbes

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max. »

Max : « Bonjour 🙂 Qui veut faire le petit rappel ? »

Léo : « Nous n’avons pas beaucoup avancé encore. Nous avons vu que les microbes sont des êtres vivants invisibles à l’œil nu. »

Samuel : « Il y a des bactéries, des virus, des protozoaires, des champignons microscopiques et les micro-acariens. »

Léo : « Dans chacun de ces groupes, il y en a qui rendent malade. On dit qu’ils sont pathogènes. Toutefois la plupart n’ont aucun effet. Qu’ils soient là ou pas ça ne change rien. Il existe des microbes bénéfiques comme les bactéries et les moisissures qui permettent de faire les fromages ou le pain et puis il y en même qui sont indispensables. C’est le cas par exemple des bactéries du microbiote intestinal humain sans lequel on ne va pas bien. »

Max : « 1012 à 1014 bactéries appartenant à environ 120 espèces… Il y a également des virus dont des bactériophages qui se développent au détriment de nos chères bactéries. C’est un véritable écosystème 🙂 Aujourd’hui nous allons nous intéresser à la taille des microbes. Savez-vous effectuer un calcul ? »

Léo : « Normalement oui. Mais ça va dépendre du calcul. »

Max : « Rien de difficile. Vous allez calculer les tailles réelles de microbes en utilisant une barre d’échelle. Petit exemple de proportionnalité. J’espère que vous vous souvenez des sous multiples du mètre et que vous savez les convertir. Pour plus de facilité nous utiliserons les puissances de dix. »

Samuel : « Ça devrait aller 🙂 « 

Max : « Je vous fais le premier calcul comme exemple. »

Demodex sp., micro-acrarien de la poussière

Max : « Comme vous le voyez, la barre d’échelle représente 30 μm = 0,000 030 m = 30.10-6 m. Sur mon écran, cette barre d’échelle mesure 4,5 cm = 0,045 m = 4,5.10-2m. Vous suivez ? »

Léo : « Oui monsieur Max. »

Max : « Sur mon écran, l’animal mesure environ 12 cm = 0,12m = 12.10-2m. »

Max : « J’ai fait avec les puissances de dix et avec les nombres décimaux. Maintenant je fais le produit en croix. »

x = (30.10-6 x 12.10-2)/4,5.10-2 = 80.10-6 m.

Ce charmant petit animal mesure environ 80.10-6 m ou 80 μm. Voilà 🙂 « 

Léo : « Ce n’est pas trop difficile. »

Max : « Alors tu vas faire l’exemple suivant Léo. »

Photographie d’une paramécie observée au microscope. Les paramécies sont des animaux unicellulaires qui vivent à la surface des eaux calmes, stagnantes.

Léo : « A l’écran, la barre d’échelle mesure 7 mm = 0,007 m = 7.10-3 m. Elle représente 10 μm = 0,000 010 m = 10.10-6 m. A l’écran, la paramécie mesure 14 cm = 0,14 m = 14.10-2 m. Je fais le tableau de proportionnalité. »

Léo : « Maintenant je fais le produit en croix. x = (14.10-2 x 10.10-6) / 7.10-3 = 200.10-6m. La paramécie mesure donc 200.10-6m soir 200 μm. »

Max : « C’est bien Léo. Samuel, tu vas faire le troisième exemple. Voici l’image que tu vas utiliser. »

Photographie de virus H1N1. Ce virus est à l’origine d’une forme particulière de la grippe.

Samuel : « Oulala ! Il est tout petit ce virus ! La barre d’échelle représente 100 nm c’est-à-dire 100.10-9m. A l’écran, elle mesure 7 mm = 0,007 m = 7.10-3m. Le diamètre d’un de ces virus est de 5 mm à l’écran soit 5.10-3 m. Il faut faire le tableau de proportionnalité maintenant. »

Samuel : « J’en arrive au produit en croix. x= (5.10-3 x 100.10-9)/7.10-3 = 74,42.10-9m. Ce virus est vraiment tout petit puisqu’il ne mesure que 70 nm environ. »

Max : « Apparemment vous savez effectuer un calcul. Je vous donne deux autres images. Vous pourrez vous amuser à calculer la taille réelle de chacun des microbes qu’elles représentent. Pour le moment, vous pouvez filer en récréation. »

Samuel et Léo : « Merci monsieur Max. Au revoir monsieur Max ! »

Photographie d’une amas de bactéries Escherichia coli observées au microscope optique.
Photographie d’un bactériophage T4 observé au microscope électronique.

Séance suivante

« Tous pareils, tous différents ». La leçon

DES CARACTÈRES PHYSIQUES

« Tous pareils, tous différents. » André Langaney

I. LES CARACTÈRES SPÉCIFIQUES ET LEURS VARIATIONS INDIVIDUELLES.

Une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde.

Tous les individus d’une même espèce ont des caractères physiques communs qu’on ne retrouve pas chez les autres espèces. Ce sont des caractères spécifiques. Un caractère spécifique est un caractère physique qui n’appartient qu’à une espèce.

Les caractères spécifiques humains sont, entre autres : la bipédie exclusive, un cerveau très développé, un langage à double articulation et des empreintes digitales.

Au sein d’une espèce, les individus sont différents en raison des variations individuelles des caractères spécifiques. Tous les êtres humains ont des empreintes digitales, mais elles sont différentes chez chaque être humain.

Max : « Avez-vous des questions ? »

Samuel : « Oui monsieur Max. Pourriez-vous préciser ce que vous entendez par un langage à double articulation ? »

Max : « Oui Samuel. Vous avez remarqué que les langues humaines comportent des mots formés de syllabes. C’est le premier niveau d’articulation. Et ces mots sont organisés en phrases grâce à des règles de grammaire. C’est le second niveau d’articulation. »

Samuel : « Merci monsieur Max. »

Léo : « Il n’y a que chez l’humain qu’on retrouve ce langage ? »

Max : « Les recherches montrent que beaucoup d’animaux ont eux aussi des langages. Ainsi, chez les marmottes, des cris peuvent avertir qu’un prédateur arrive par les airs du côté de la montagne ou que le danger vient du sol du côté de la vallée. Ce langage a donc un vocabulaire assez précis. Chez certains oiseaux, un cri équivalent à un mot change de sens en fonction de sa place dans le chant. Pour être juste, il faudrait dire que le langage humain est plus complexe que celui des autres animaux. »

Léo : « Merci monsieur Max. »

Max : « Avant de terminer, puisqu’il nous reste un peu de temps, je voudrais vous faire lire un texte qui vous permettra de mieux comprendre l’infinie diversité des individus au sein d’une espèce. »

« Dire que les êtres humains sont tous différents ! […] comment est-ce possible ? Imagine que dix personnes se réunissent pour bricoler un masque. Chaque participant arrive avec une partie du visage. Ainsi Claude et Alain ont apporté chacun un nez, Jeanne et Mélanie chacune une bouche, Christian et Pascal chacun deux couleurs d’yeux… […] Avec ce matériel, il est possible de faire toutes sortes de masques différents. Avec seulement deux yeux et deux bouches, le masque peut avoir 4 visages différents. S’ils utilisent en plus les deux mentons, ils disposeront de 8 visages […] Fais le calcul : pour 10 traits, tu trouveras 1024 visages, et pour 30 traits, plus de 1 milliards de visages. »

A. Jacquard et M.-J. Auderset, Moi, je viens d’où ?, Le Seuil, 2002, p. 15

Séance suivante

 

Les caractères physiques

Vous savez tous qu’une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde. Cela signifie que les petits pourront se reproduire à leur tour quand ils seront en âge de le faire. Vous avez remarqué que la définition d’espèce comprend deux parties : le critère de ressemblance et le critère de fécondité. Le critère de ressemblance fait appel aux caractères physiques des individus appartenant à l’espèce étudiée. Certains des caractères des individus sont communs à tous les individus de l’espèce. Mais d’autres sont des traits particuliers à un individus alors que d’autres encore se retrouvent dans des familles, des groupes… Nous allons apprendre à distinguer ces différents caractères et apprendre un peu de vocabulaire. C’est très utile le vocabulaire pour construire une réflexion.

Au passage nous allons commencer à réfléchir à la position de l’espèce humaine dans le règne animal. La première chose à faire est d’essayer de définir l’espèce humaine. Vous allez voir que ce n’est pas si facile qu’on le pense 🙂

Voilà pour la courte introduction au premier chapitre. Il est maintenant temps de nous mettre au travail.

Commencer le chapitre

Lymphocytes B et anticorps (le cours)

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max. »

Max : « Bonjour mes petits 🙂 Aujourd’hui c’est un peu repos. Je vous fais la leçon puis vous aurez un petit quiz auquel il vous faudra répondre. »

Léo : « Un quiz ? D’accord 🙂 « 

Max : « Pour le moment, prenez vos cahiers et notez… »

LES RÉACTIONS SPÉCIFIQUES À L’INFECTION

I. LYMPHOCYTES B ET ANTICORPS.

Lors d’une infection qui n’est pas stoppée par les réactions rapides et non-spécifiques, des lymphocytes B peuvent être activés par leur rencontre avec un antigène. Ces lymphocytes activés se multiplient par mitose. Une partie de ces lymphocytes B resteront des lymphocytes B mémoire pour une prochaine infection par le même antigène. Les autres fabriquent et libèrent des anticorps qui vont se fixer sur l’antigène.

Si l’antigène est libre, comme une toxine, il se forme un complexe immun qui va être détruit par phagocytose.

Formation d’un complexe immun par reconnaissance spécifique antigène-anticorps.

Si l’antigène est fixé à une cellule, elle sera phagocytée elle aussi.

Un antigène est une molécule reconnue étrangère par le corps et qui provoque une réaction immunitaire spécifique.

Un anticorps est une molécule produite par les lymphocytes B pour inactiver un antigène et provoquer sa destruction par phagocytose.

Une personne séropositive est une personne dont le sérum contient des anticorps spécifiques d’un antigène donné.

Max : « Voilà 🙂 « 

Léo : « C’est tout ? »

Samuel : « Ben oui Léo. il y a tout là. C’est pas très compliqué quand on prend le temps de comprendre. »

Léo : « La nature est bien faite quand même. »

Max : « Sans ces mécanismes nous ne pourrions pas survivre. »

Samuel : « Monsieur Max, est-ce qu’il arrive que le système immunitaire ne fonctionne pas ? »

Max : « Oui Samuel. Nous étudierons cela plus tard. Ce sont les immunodépressions. Pour le moment je vous donne un petit exercice. Voici un schéma en 5 étapes. Vous allez faire le texte qui l’accompagne. N’oubliez pas de décrire chacun des éléments. »

Léo : « C’est un peu comme faire une légende mais dans le texte. D’accord. Au travail ! »

Max : « Nous nous retrouverons dans le prochain article pour la correction. »

Samuel : « D’accord monsieur Max. »

Léo : « A tout de suite. »

Séance suivante

L’origine des anticorps (correction)

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 »

Léo : « Monsieur Max, avez-vous corrigé nos copies ? »

Max : « Oui Léo mais ne soyez pas impatients. Je vous les rendrai à la fin de la séance. Pour le moment, faisons une correction rapide. »

Samuel : « Puis-je aller au tableau ? »

Max : « Oui Samuel. »

Samuel : « Merci monsieur Max. »

Observation : Suite à une infection, les individus guéris ont des anticorps spécifiques de la maladie dans leur sang.

Problème : Quelles cellules produisent les anticorps ?

Hypothèse : Je suppose que les anticorps sont produits pas les lymphocytes.

Expérience :

Protocole : On prend deux lots de souris. On injecte un antigène aux individus du premier lot puis on mesure la quantité d’anticorps dirigés contre cet antigène pendant 25 jours environ et on mesure également la quantité de lymphocytes B. Pour le second lot, on irradie les individus pour détruire leur système immunitaire. Il ne pourront plus produire de lymphocytes. Puis on mesure les quantités de lymphocytes B et d’anticorps dans leur sang pendant 25 jours environ.

Résultats : Ils sont donnés sous forme de graphiques.

Le premier graphique représente l’évolution de la quantité d’anticorps dans le sang (en u.a.) en fonction du temps (en jour) après injection de l’antigène.

Pour le lot 1, la quantité d’anticorps reste nulle pendant deux jours puis elle augmente jusqu’à 100 u.a. au 16ème jour. Ensuite, elle diminue légèrement et a la valeur de 80 u.a. le 25ème jour.

Pour le lot 2 la quantité d’anticorps reste nulle pendant 25 jours.

Le second graphique représente l’évolution de la quantité de lymphocytes B circulant dans le sang (en u.a.) en fonction du temps (en jours) après injection de l’antigène.

Pour le lot 1, la quantité de lymphocytes B augmente de 2 600 u.a. au jour zéro à 10 000 u.a. le jour 16. Ensuite, elle diminue légèrement pour atteindre 9 000 u.a. le 25ème jour.

Pour le lot 2, la quantité de lymphocytes B reste nulle pendant 25 jours.

Interprétation :

Après irradiation, il n’y a pas de lymphocytes B et il n’y a pas d’anticorps produits.

Sans irradiation, la quantité d’anticorps augmente après que la quantité de lymphocytes B ait elle-même augmenté.

Conclusion : Les anticorps sont produits par les lymphocytes B.

Max : « Bravo Samuel ! Tu as même fait l’interprétation alors que je ne vous l’avais pas demandée. »

Léo : « Si j’ai bien compris… Un antigène rentre dans le corps. Il est détecté par les lymphocytes qui se multiplient et produisent des anticorps qui neutralisent l’antigène. »

Max : « Tu as bien compris. »

Samuel : « Monsieur Max, c’est quoi précisément un antigène ? »

Max : « Bonne question Samuel. C’est un peu compliqué. Je vous explique tout ça et nous noterons la leçon la prochaine fois. Vous pouvez fermer vos cahiers pour le moment. »

Léo : « Nous écoutons 🙂 »

Max : « Chez les Mammifères, le corps reconnaît les molécules qui lui appartiennent. Il y a donc le ‘soi’ et le ‘non soi’. Un microbe porte des molécules qui lui sont propres. Prenons… Pourquoi pas le virus SRAS-CoV-2 dont on parle beaucoup. Il a une couronne de protéines à sa surface qui lui sont propres et qui lui font comme une couronne. C’est pour cela qu’on le classe dans les coronavirus. Quand ce virus entre dans le corps, il infecte les cellules de l’appareil respiratoire. Les réactions non-spécifiques se mettent en place. La plupart du temps, elles sont suffisantes. Après quelques jours de grosses fatigue et de fièvre, l’individu infecté guérit. Si les réactions non-spécifiques ne sont pas suffisantes… Zutalor ! J’ai pris un mauvais exemple… J’aurais dû prendre une maladie bactérienne. Bon, ce que j’ai dit est juste mais je change. Le tétanos… C’est une infection bactérienne. Le bacille du tétanos porte des molécules spécifiques sur sa membrane. Elles sont reconnues comme étrangère par le corps. La toxine tétanique est également reconnue comme étrangère. L’entrée du bacille et sa prolifération dans l’organisme correspond donc à l’entrée de plusieurs antigène dans le corps. Si les réactions non-spécifiques ne sont pas suffisantes, des lymphocytes B particuliers vont être activés. Ils se multiplient pas mitose puis fabriquent des anticorps spécifiques. Ces anticorps font se fixer sur l’antigène qui lui est particulier. Les anticorps anti-toxines vont se fixer sur la toxine qui ne pourra plus agir. Les anticorps spécifiques d’une protéine de la membrane du bacille va se fixer dessus et activer sa phagocytose. »

Léo : « Je comprends ! »

Samuel : « Mais… Monsieur Max, comment le corps sait-il quel antigène va entrer ? »

Max : « Il ne le sait pas Samuel. Il se prépare à tout. Je dois préciser que la reconnaissance Antigène-Anticorps ressemble un peu à la reconnaissance d’une clé et d’une serrure. Une clé correspond à une serrure. Disons que l’antigène est la serrure. Comme tu l’as dit, le corps ne sait pas quelle serrure va l’infecter. Alors il fabrique le plus de clés possibles. Il y a des mécanismes génétiques passionnants qui expliquent la fabrication de toutes ces clés. Il existe toute une variété de lymphocytes B capables de produire chacun un type d’anticorps. Les lymphocytes sont donc très variés mais il y en a peu pour chaque type. »

Samuel : « D’accord ! Et c’est pour cela qu’il faut plusieurs jours pour que la réaction des lymphocytes commence ! Imaginons que je me pique la patte à une épine de rosier sur laquelle il y a le bacille du tétanos. J’ai sûrement quelques lymphocytes B prêts à réagir quelque part dans mon corps. Mais ils ne sont que quelques uns. Si j’ai de la chance, il y en a dans ma patte juste à côté de la piqûre et ils sont activés tout de suite. Ils se multiplient rapidement et produisent les anticorps qui ratatinent la toxine et le bacille. Je guéris donc rapidement. Peut-être même avant de savoir que je suis malade ! »

Léo : « Tu n’es pas malade alors ! Puisque tu guéris avant 🙂 Ou alors tu n’as pas de chance. Les lymphocytes B adaptés au tétanos se promènent ailleurs dans ton corps au moment où tu te piques la patte. Et là c’est embêtant. Parce que le temps que ces bons lymphocytes B arrivent sur place, qu’ils s’activent, se multiplient et produisent les anticorps, le bacille s’est déjà multiplié et il a produit plein de toxines. Et tu vas mourir. Argh ! »

Samuel : « Je m’en fiche du tétanos ! Les peluches ont pas de maladie 🙂 »

Léo :  » 🙂 Monsieur Max, nous avons vu que les quantités de lymphocytes B et d’anticorps diminuent après 16 jours. C’est parce que les souris ont guéri ? »

Max : « Oui Léo. Mais les lymphocytes B qui ont été activés vont rester un peu actif. Il y en aura plus qu’avant l’infection et ils continueront à produire un peu d’anticorps. Ces lymphocytes B, ceux qui continuent à circuler après la guérison sont appelés lymphocytes B mémoire (LBm). »

Samuel : « Le corps se souvient de la maladie ! Comme ça, la réaction est plus rapide lors de l’infection suivante et on est même pas malade ! »

Léo : « Il est rudement efficace le système immunitaire ! Rholala ! »

Max : « Oui mes petits 🙂 Une dernière chose. On peut détecter les anticorps spécifiques d’une maladie dans le sang grâce à des tests. Si le test est positif pour une maladie, l’individu testé est déclaré séropositif pour la maladie. »

Léo : « J’ai déjà entendu ça ! Pour la COVID-19 ! Si j’ai bien compris ça veut dire que soit l’individu est guéri, soit qu’il a été exposé à la maladie sans la développer. »

Samuel : « Je comprends maintenant ! Si un individu a été exposé et que son système immunitaire a réagi rapidement, il a les anticorps mais il n’a pas été malade ! »

Léo : « Rholala ! Il est bien ce cours 🙂 On comprend des tas de choses ! »

Max : « Je suis ravi de cette réaction 🙂 Mais nous allons nous arrêter là pour aujourd’hui. »

Samuel : « D’accord. Merci monsieur Max. »

Max : « Sortez vous dégourdir les pattes maintenant. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits 🙂 »

Séance suivante

L’origine des anticorps

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max. »

Max : « Bonjour bonjour 🙂 »

Léo : « Je peux faire le petit rappel monsieur Max ? »

Max : « Tu peux le commencer. »

Léo : « D’accord. Nous avons d’abord étudié les réaction rapides du corps à une infection. C’est la réaction inflammatoire. Il y a également la phagocytose et la fièvre. »

Max : « Samuel, peux-tu détailler ce que viens de dire Léo ? »

Samuel : « Détailler ? C’est à dire être plus précis ? Oui. Lors de la réaction inflammatoire la zone infectée gonfle, s’échauffe, rougit et devient douloureuse. Les phagocytes se rassemblent et digèrent les bactéries ou les cellules infectées. Ils meurent. Des bactéries aussi. Avec la lymphe ça fait du pus. La fièvre a pour but de limiter la multiplication des bactéries et des cellules infectées. Elle limite l’infection. Mais elle limite également les mitoses de l’organisme et ça c’est embêtant. »

Max : « C’est vrai Samuel. Léo, tu reprends s’il te plaît ? »

Léo : « Les réactions immédiates sont non-spécifiques c’est-à-dire qu’elles se mettent en place quelle que soit l’infection. Comme elles sont rapides, elles sont souvent efficaces et suffisantes ces réactions. Parfois, on a un peu de fièvre mais on ne s’en rend même pas compte. On a eu une courte infection dans la journée et c’est passé. »

Max : « C’est très bien tout ça. Samuel, la suite. »

Samuel : « La suite ? C’est l’activité de la dernière fois avec les expériences de von Behring. C’était pas si compliqué en fait. Nous avons vu que certaines personnes survivent à des maladies infectieuses. Les exemples étaient la diphtérie et le tétanos mais ça aurait pu être d’autres maladies infectieuses. Les personnes qui survivent ont quelque chose dans le sang qui leur permet de lutter contre la maladie. Je dis bien LA maladie parce que ce quelque chose est spécifique. Ça ne marche qu’avec une maladie. Et ça peut être transféré d’un individu à l’autre. »

Max : « Très bien Samuel. Léo ? »

Léo : « Ce quelque chose est une molécule. On le sait parce que von Behring a utilisé du sérum et le sérum c’est la partie liquide du sang qui ne contient pas de cellules. Ces molécules ont été appelées anticorps. Les anticorps sont produits quand le corps reconnaît une molécule étrangère. L’anticorps se fixe sur l’antigène et voilà. Mais ça me pose un problème. »

Max : « Je t’écoute Léo. »

Léo : « Une molécule n’apparaît pas comme ça toute seule. Elle doit être produite par une cellule. Quelles sont les cellules qui produisent les anticorps ? »

Max : « Excellente question Léo. »

Samuel  : »J’ai une hypothèse. Nous savons qu’il y a des lymphocytes. Je suppose que ce sont les lymphocytes qui produisent les anticorps. »

Max : « Excellente hypothèse. Je vous laisse vérifier cela en vous donnant juste un petit graphique. Ou plutôt deux graphiques… Les voici ! »

Pour cette expérience on injecte des globule rouge de mouton (GRM) dans une souris pour lui faire produire des anticorps spécifiques dits anticorps anti-GRM. Pour le lot 2 la souris a été irradiée pour détruire les organes lymphoïdes primaires. Ensuite on mesure les quantités d’anticorps anti-GRM et de lymphocytes B.

Léo : « Si je comprends bien nous allons encore suivre une démarche expérimentale. Nous avons observé que suite à une infection, des lymphocytes apparaissent. Nous nous demandons quelles cellules les fabriquent. Vous nous avez donné le protocole et les résultats sont donnés sous forme de graphiques. La suite c’est facile. »

Max : « Oui, il n’y a rien de difficile là-dedans. J’ai quelques questions à vous poser avant. »

Léo : « Trop facile ! »

Samuel : « Ça va prendre 5 minutes ! »

Léo : « J’ai déjà trouvé la conclusion ! »

Samuel : « Le plus long c’est d’écrire 🙂 »

Max : » Soignez quand même votre travail. Quand vous aurez fini, vous pourrez filer en récréation. »

Origine des anticorps (activité)

Séance suivante

Les microbes (Illustrations)

Bonjour à tous ! Lors de la séance précédente je vous ai parlé des microbes. Vous savez maintenant que le groupe des microbes est artificiel. Il ne correspond pas à un groupe biologique puisqu’il est fondé uniquement sur un seul critère : la taille ! Pour être un microbe, il faut être invisible à l’œil nu. Maintenant que vous savez ça je peux vous montrer quelques uns de ces microbes. Commençons par les bactéries…

LES BACTÉRIES…

A quoi ressemble une bactérie ? Un schéma devrait vous aider à comprendre…

Schéma d’une bactérie observée au microscope (source : lesbacteries-canalblog.com)

Une bactérie possède une membrane et un cytoplasme. C’est donc bien une cellule. Mais elle n’a pas de noyau ! Le chromosome, où le filament d’A.D.N., se trouve directement dans le cytoplasme. Les bactéries ont une paroi et certaines ont des filaments qui leur permettent de se déplacer. Mais quelle est la taille d’une bactérie me demanderez-vous ? Ça dépend de la bactérie mais, bien évidemment, les bactéries sont invisibles à l’œil nu. Les photographies suivantes vous donneront une idée de la taille de bactéries moyennes…

Photographies de bactéries Escherichia coli sur une tête d’épingle observée au microscope électronique à balayage.

Bon, d’accord, il n’y a pas d’échelle. Mais ce n’est pas moi qui ai fait le document ! La bactérie est Escherichia coli. En voici un autre portrait…

Photographie de bactéries Escherichia coli observées au microscope électronique à balayage (Source : wikipédia)

Là, il y a une échelle. La graduation en bas à droite représente 2 micromètres soit 2 millionièmes de mètre… Escherichia coli mesure donc quelques microns…

Escherichia coli est une bactérie très abondante dans l’intestin grêle humain. Elle représente 80% de la masse du microbiote intestinal. Elle est donc indispensable à notre bon fonctionnement. Malheureusement il existe des souches pathogènes qui provoque des gastro-entérites, des infections urinaires, des méningites…

Voici une autre espèce bactérienne…

Photographie de Staphylocoques dorés observés au microscope électronique à balayage.

Il s’agit de staphylocoques dorés. Entre 15 et 30 % de la population en a sur la peau sans aucun effet. On la trouve également dans les fosses nasales, sur les muqueuses ou un peu dans le tube digestif. Parfois, elle devient pathogène et peut provoquer des infections graves.

Vous avez remarqué que les bactéries n’ont pas toutes la même forme. Les E. coli sont en bâtonnets. Les Staphylocoques sont sphériques… Voici une classification des bactéries selon leur forme…

Classification des bactéries selon leurs formes (source : www.astrosurf.com)

On pense souvent que les bactéries sont nos ennemies mais souvenez-vous que c’est grâce à elle que nous faisons des yaourts (Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus), des fromages (Brevibacterium linens est responsable de la coloration orangée des fromages à ‘odeur de pied’ comme le munster, le livarot…)…

LES VIRUS…

En ce moment, les coronavirus occupent le devant de la scène en particulier le SRAS-CoV-2 qui provoque la maladie CoViD-19. Il s’agit du Syndrome Respiratoire Aigu et Sévère provoqué par le CoronaVirus apparu en 2019. Les coronavirus forment une famille de virus qui se ressemblent beaucoup. Voici une photographie du coronavirus à l’origine du Syndrome Respiratoire Aigu et Sévère (SRAS).

Photographie du coronavirus à l’origine du SRAS observé au microscope électronique à transmission.

Des molécules de surface forment comme une couronne autour du virus d’où l’appellation coronavirus. Les coronavirus provoquent presque tous des infections respiratoires.

Il existe des tas de virus qui sont pathogènes pour une ou plusieurs espèces. La plupart du temps, un virus qui touche une espèce est inoffensif pour les autres. Mais parfois, non…

Voici des virus étranges…

Photographie de bactériophages T4 au microscope électronique (source : Wikipédia).

Ces étranges virus semblent avoir des pattes. Ils s’attaquent à des bactéries dans lesquelles ils injectent leur petite information génétique. Celle-ci s’insère dans le filament d’A.D.N. de la bactérie qui se met à fabriquer des virus. Parfois, la bactérie produit tellement de virus qu’elle finit par éclater et meurt.

Si vous vous souvenez de ce que vous avez lu il y a quelques minutes, vous savez que certaines bactéries nous rendent malades. Certains médecins ont eu l’idée géniale d’utiliser des bactériophages pour détruire les bactéries qui nous rendent malades ! Malheureusement, ces recherches ne sont pas encore vraiment autorisées en France… Je vous mets un lien vers un excellent documentaire…

L’excellent documentaire

Les virus ne seraient donc pas tous mauvais pour nous. Certes certains sont pathogènes. D’autres n’ont aucun effet. Et les bactériophages pourraient sauver des vies…

LES PROTOZOAIRES…

Les protozoaires sont des animaux unicellulaires. Ils sont bien sûr très petits. Voici un exemple.

Photographie d’une goutte de sang d’un individu infecté par le trypanosome observée au microscope. On voit des globules rouges et quatre trypanosomes. Un globule rouge mesure environ 7 micromètres de diamètre. (source : Wikipédia)

Une espèce de trypanosome, Trypanosoma gambiense, peut infecter l’Homme. La transmission, ou contamination, se fait par une mouche bien connue : la mouche Tsé-Tsé. L’infection va donner une maladie appelée maladie du sommeil. L’individu malade est de plus en plus fatigué, s’endort puis tombe dans le coma avant de trouver la mort…

Un autre protozoaire peut infecter l’Homme. Il s’agit du plasmodium. Il est véhiculé par un moustique, le moustique anophèle. Les femelles anophèles piquent pour se nourrir de sang. Je rappelle qu’un tel animal est qualifié d’hématophage. Si l’individu piqué est infecté par le plasmodium, il passe dans la moustique avec le sang prélevé. Une partie des plasmodiums vont aller se placer dans les glandes salivaires de la moustique. Lorsqu’elle pique, elle injecte un peu de salive qui contient un anticoagulant (produit qui évite au sang de former des croûtes). En injectant l’anticoagulant, la moustique infecte une autre personne…

Le plasmodium (Plasmodium falciparum) provoque le paludisme autrefois appelé fièvre jaune, fièvre des marais ou malaria. Cette maladie touche surtout les pays situés entre les tropiques où il provoque la mort d’environ 1 000 000 de personnes par an. Le plasmodium est l’animal qui fait le plus de morts sur terre…

Notons que les personnes touchées par la drépanocytose, ou anémie falciforme, ne développent pas le paludisme. Dans les pays où le paludisme sévit, jusqu’à 60 % de la population est touchée par la drépanocytose. Ceci s’explique aisément. Les enfant non atteints par la drépanocytose meurent jeunes. Les autres, porteurs d’au moins un allèle de la maladie, transmettront donc probablement l’allèle à leur descendance. Une maladie gênante au delà des tropiques est donc un avantage notable pour la survie sous les tropiques… A méditer…

LES MICRO-ACARIENS…

Commençons par une photographie…

Photographie au microscope électronique d’un micro-acarien.

Observons cet animal. Bien que très petit, il possède un squelette externe appelé cuticule. Il possède quatre paires de pattes articulées et son corps comporte deux parties : un céphalothorax et un abdomen. Vous avez reconnu la description d’un Arachnide. C’est donc un cousin des Araignées. Les pièces buccales forment un rostre ce qui en fait un acarien. Comme il est invisible à l’œil nu on parle de micro-acarien.

Les micro-acariens sont connus pour provoquer des allergies. Soyons justes avec eux ! Ils n’y sont pas pour grand chose ! Ce ne sont pas les animaux qui provoquent les allergies ! Ce sont leurs excréments ! Si vous dressez bien vos micro-acariens ils cesseront de faire caca partout et vous n’aurez plus d’allergies 🙂

Les micro-acariens, comme les autres microbes, sont absolument partout. Il y en a dans les lits. Un lit en contient environ… beaucoup de millions. Les micro-acariens des lits appartiennent surtout à l’espèce Dermatophagoïdes pteronyssinius. 

Photographie au microscope électronique à balayage de Dermatophagoïdes pteronyssius (Source : www.med.ch).

Les micro-acariens des lits se nourrissent des cellules mortes que nous perdons à tout moment… Ils vivent, se nourrissent, de reproduisent, font caca, meurent… dans nos lits… J’ai lu, il y a quelques temps, un article de journal qui disait qu’un oreiller moyen en France était composé d’environ 30 % d’acariens. A votre place je brûlerais immédiatement mon oreiller 🙂

Quelles mesures pour se débarrasser des micro-acariens ?

D’autres acariens vivent dans notre peau. Ils y creusent des tunnels. La plupart du temps on ne le sait pas. Mais le sarcopte de la gale peut provoquer le gale. C’est une maladie de la peau…

Photographie au microscope électronique à balayage du sarcopte de la gale.

Un dernier exemple. Il s’agit de Demodex folliculorum. Voici son portrait.

Photographie au microscope électronique à balayage du micro-acarien Demodex folliculorum.

Ce micro-acarien vit sur le visage 🙂 Plus un humain est âgés, plus il y a de probabilités qu’il soit porteur de ce charmant animal. Le demodex se nourrit de sébum et de cellules mortes et se reproduit dans les follicules pileux. Je m’arrête là pour ne pas heurter le sensibilité des plus sensibles 🙂

LES CHAMPIGNONS MICROSCOPIQUES…

Commençons par les méchants, ceux qui provoquent des maladies appelées mycoses. Beaucoup d’organes peuvent être touchés mais les mycoses les plus fréquentes touchent la bouche, les pieds, le vagin…

Pour la bouche, il peut s’agir du muguet buccal. Il se repère au tâches blanches qui apparaissent sur la langue, le palais et les gencives. On observe des filaments ou des plaques provoqués par l’accumulation de levure de l’espèce Candida albicans présente naturellement chez les humains. Cette mycose est fréquente chez les bébés de moins de deux mois dont le système immunitaire est encore peu fonctionnel. Cette maladie apparaît également chez les personnes immunodéprimées…

Plusieurs mycoses apparaissent au niveau des pieds : sous les ongles, entre les orteils… Elles sont également causées par des champignons unicellulaires qui se régalent de l’humidité et de la chaleur qui règnent sous les chaussettes 🙂

Je n’en dirai pas plus sur les mycoses.

Passons aux gentils champignons. Il y en a beaucoup. Je ne sais pas par lequel commencer… Mmmm… Si ! Saccharomyces cerevisae ! Vous en mangez tous ! Et vous seriez très malheureux sans cette levure ! C’est la levure qui sert à faire gonfler le pain ! Sans elle, pas de pain ! Ni grec ! Ni pâte à pizza ! Ni hamburger ! Merci Sacchoromyces cerevisae ! Tiens, je mets ta photo !

Photographie au microscope électronique à balayage de Sacchoromyces cerevisae (Source : Wikipedia)

On lui doit aussi le vin et la bière. Oui, je sais, ce n’est pas bien de boire de l’alcool. Mais il y a une raison à la consommation d’alcool autrefois ! Essayez de garder de l’eau sans qu’elle deviennent un bouillon de culture ! Allez-y ! Essayez ! C’est facile d’avoir l’eau au robinet et de râler parce qu’elle a un goût qui vous déplaît ! Ou d’acheter de l’eau en bouteilles qui polluent tout ! Nos ancêtres n’avaient pas tout ça ! Alors ils ont inventé les boissons alcoolisées. Tout le monde sait que l’alcool désinfecte ! Bon, d’accord, après ils ont pris l’habitude de trop en boire. Mais c’est un fait : boire de l’alcool donne soif ! Voilà voilà… Inutile de dire qu’il ne faut pas boire d’alcool. Ce n’est ni utile ni malin. Et Saccharomyces cerevisae peut se contenter de faire du pain…

Vous prendrez bien un peu de fromage avec votre pain ? Du roquefort ? Du camembert ? Eux aussi sont faits grâce à des champignons unicellulaires. Plus particulièrement des moisissures. Penicillium roqueforti pour le roquefort et Penicillium camemberti pour le camembert 🙂 Le lait aussi est difficile à conserver. Alors les humains ont inventé les fromages pour le conserver. Pour conserver le lait ils le font moisir 🙂 Il y a des tas de fromages fait à base de champignons. Je ne les connais pas tous. Nous avons donc, le pain, le vin, le fromage qui sont fait à partir de champignons microscopiques. Ajoutons le yaourt et d’autres fromages faits grâce à des bactéries et nous avons la base de l’alimentation européenne. Surtout que pour la charcuterie, il faut aussi des fermentations avec des levures…

Voilà, nous arrivons au terme de cet article pas très appétissant. Quoi que… C’est grâce aux microbes que nous mangeons, que nous digérons (voir l’article sur le microbiote intestinal qui je vais bientôt écrire), que nous allons bien… Mais c’est vrai aussi que c’est à cause des microbes que nous sommes malades… Que retenir de cela ? Simplement que l’équation microbes = maladie est fausse… Et que nous avons tous une responsabilité en matière de contamination. Mais ça, c’est une autre histoire…

En complément du complément, avant que je ne rédige un autre article :

un autre documentaire

Voilà, maintenant que vous avez lu cet article, vous mourrez moins bête 🙂

Séance suivante

« Tous pareils, tous différents ». 2- Tous différents

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Qui veut faire le petit rappel ? »

Samuel et Léo : « Moi monsieur ! Moi ! »

Max : « Choix ô combien cruel ! Léo… »

Léo : « Nous avons vu que tous les êtres humains sont pareils grâce à la classification de l’Homme sous forme de groupes emboîtés parmi les Vertébrés. »

Max : « C’est un bon résumé 🙂 Samuel, peux-tu en dire plus ? »

Samuel : « Ce n’est pas facile… L’Homme a un squelette en os. Ses nageoires charnues sont transformées en membres. Il a des poils et une paire de mamelles thoraciques. Il a des ongles aussi. Mais là, j’ai parlé des Primates. Parmi les Primates il se distingue par le fait qu’il se tient debout et qu’il a un cerveau très développé. J’espère n’avoir rien oublié. »

Max : « Tu n’as rien oublié Samuel 🙂 C’est très bien. »

Léo : « Monsieur Max, j’ai bien étudié ma leçon et je crois que j’ai d’autres caractères physiques qui distinguent l’Homme des autres primates. »

Max : « Je t’écoute Léo. »

Léo : « Il est pas très poilu. Même que parfois on lit que c’est ‘un singe nu‘. Et puis ses pouces des pieds ne sont pas opposables aux autres doigts. »

Max : « Très bien Léo. »

Samuel : « Et puis il a la face plate ! L’orang-outan ou le babouin ont comme un museau ! »

Max : « C’est vrai aussi ! Vous venez de compléter la liste des caractères spécifiques humains. »

Léo : « Les caractères spécifiques ? C’est comme cela qu’il faut appeler les caractères qu’on ne trouve que dans une seule espèce ? »

Max : « Oui Léo. Nous le noterons dans la leçon. Maintenant parlons des différences… »

Léo : « Pfff… Ce n’est pas facile à expliquer… »

Max : « Prenez des exemples si cela vous parait plus facile. »

Samuel : « Il y a des tas de caractères physiques qui varient légèrement ou beaucoup selon les individus : la taille, la musculature, la couleur des yeux, des cheveux, de la peau… »

Léo : « Et en combinant toutes ces variations on arrive à des individus uniques. »

Max : « Je prendrais un dernier exemple. A ma connaissance, les humains sont les seuls Primates qui ont des empreintes digitales. »

Léo : « C’est un caractère spécifique alors ! »

Samuel : « Mais chaque être humain a ses propres empreintes digitales ! Nous avons expliqué le paradoxe du début ! Nous sommes bien tous pareils et tous différents ! »

Max : « Et oui 🙂 Bien, prenez vos cahiers et notons la leçon. »

Note de Max : Pour des raisons pratiques je préfère que cette leçon se trouve dans un autre article. Cliquez sur le lien 🙂

Séance suivante

La découverte des anticorps

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez -vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. »

Samuel : « Monsieur Max, je sais que d’habitude nous commençons par le petit rappel. Mais j’ai une question. »

Max : « Alors commençons par ta question Samuel. »

Samuel : « Merci monsieur Max. Vous nous avez parler des maladies causées par les bactéries. Il y a la peste par exemple. Elle a fait beaucoup de mort la peste. « 

Max :  « Oui Samuel, effectivement. Entre 1347 et 1352 la peste a tué 41% de la population du Royaume de France ce qui fait 7 millions de personnes pour une population de 17 millions. »

Léo : « Oulala ! Tout ça ! »

Max : « Oui, tout ça. »

Samuel : « Ben moi, ce qui m’étonne, c’est que 59% de la population ne soient pas morts. Et, si j’ai bien compris mes lectures, les gens qui guérissent ne peuvent plus jamais être malade. Comment ça se fait ? »

Max : « Très bonne question Samuel ! J’apprécie ta curiosité. C’est ce que nous allons voir. Nous avons terminé d’étudier les réactions immédiates de l’organisme à l’infection. Je vous rappelle que ce sont la fièvre et la phagocytose. Nous allons maintenant étudier les réactions  lentes et, au passage, nous allons répondre à ta question Samuel. »

Samuel : « Merci monsieur Max. »

Max : « Je vous distribue un document. A vous de l’étudier et de répondre aux questions. Au travail ! »

La diphtérie et le tétanos sont deux maladies d’origine bactérienne. Dans les deux cas les bactéries produisent des molécules toxiques appelées toxines. Ces deux toxines sont mortelles chez la plupart des personnes mais certains individus survivent cependant.

En 1890, le chercheur Ernst Von Behring cherche à expliquer la résistance à la toxine diphtérique. Il obtiendra le prix Nobel pour es travaux en 1901.

Saurez-vous retrouver ses conclusions ?

Source : SVT 3ème, Hachette Éducation, 2008

Le sérum est la partie liquide du sang dépourvue de cellule et des protéines de coagulation.

1. Rédiger le protocole expérimental.

2. Formuler les résultats.

3. Classer dans l’ordre de taille décroissante les éléments suivants : Atome, cellule, molécule, organe, organisme.

4. Quelle conclusion tirez-vous de cette expérience ?

Léo : « Trop facile ! »

Samuel : « Monsieur Max, on peut faire l’intégralité de la démarche expérimentale ? »

Max : « Si vous voulez. »

Léo : « C’est parti ! »

Observation : « Suite à des épidémies de maladies d’origine bactérienne des individus meurent et d’autres survivent et ne retombent plus malades.

Problème : Comment expliquer cette immunisation ?

Expérience de Von Behring

Protocole :

Dans une première série, Von Behring injecte des bactérie provoquant le tétanos à un lot de souris. Dans une deuxième série, il injecte des bactérie provoquant le tétanos et du sérum de souris ayant survécu au tétanos. Dans la troisième série il injecte des bactéries provoquant le tétanos et le sérum de souris ayant survécu à la diphtérie.

Résultats :

Dans le premier lot, la plupart des souris meurent du tétanos. Dans le deuxième lot, les souris guérissent après avoir développé les symptômes du tétanos. Dans la troisième série la plupart des souris meurent.

Interprétation :

Dans la deuxième série, les souris guérissent car elles ont reçu quelque chose de souris guéries.

Conclusion : Suite à une infection bactérienne, des individus fabriquent des molécules qui les aident à guérir de la maladie.

Max : « Pourquoi affirmez-vous que ce sont des molécules ? »

Samuel : « Ben, parce que dans le sérum il n’y a pas de cellules. Grâce à la question 3 on sait que, plus petit que les cellules, il y a les molécules et les atomes. Mais on sait aussi que les atomes n’existent pas tous seuls. Ils forment des molécules. S’il n’y a pas de cellules, ce sont forcément des molécules. »

Max : « Très bien raisonné mon petit Samuel. Nous pouvons aussi ajouter que ces molécules sont produites en présence d’un élément étranger particulier. Cet élément est appelé antigène. La molécule produite par le corps en réponse à cet élément étranger est appelé anticorps. »

Samuel : « Je n’ai pas encore ma réponse mais je commence à comprendre. »

Max : « Nous continuerons à y répondre lors de la prochaine séance. Pour le moment rangez vos affaires et filez vous dégourdir les pattes. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Séance suivante