Observation de microbes au microscope optique

Bonjour à tous !

Aujourd’hui je vais vous expliquer comment réussir à observer quelques microbes non-pathogènes au microscope optique. Je vous propose d’observer les bactéries du yaourt, des levures de boulanger, les moisissures d’un fromage et nous allons essayer d’observer les bactéries de votre bouche. Oui, il y en a 🙂

Les bactéries du yaourt

Le yaourt est un produit fermenté d’origine animale à base de lait, sa fabrication fait intervenir deux bactéries lactiques Lactobacillus bulgaricus et Streptococcus thermophilus dont l’action conduit à la formation de l’acide lactique à partir du lactose. Si votre observation est réussie vous devriez donc observer deux espèces bactériennes.

Pour cette manipulation j’ai un problème. J’ai plusieurs protocoles pour la réalisation de la préparation microscopique et je ne me souviens plus lequel donne les meilleurs résultats. Vous allez m’aider. Vous allez suivre ces trois protocoles et vous me direz lequel fonctionne le mieux. Je compte sur vous !

TP Microbes Bactéries du yaourt

Photographie des bactéries du yaourt après coloration au bleu de méthylène.
Les levures de boulanger

Il faut préalablement réaliser une suspension de levure. Pour cela il faut mélanger 1 gramme de levure fraîche de boulanger avec 100 mL d’eau tiède et 1 gramme de glucose puis laisser reposer une heure. On peut également observer directement la levure. 

Photographie de levure de boulanger observées au microscope.
Moisissures du fromage

Beaucoup de fromages sont fabriqués grâce à des champignons microscopiques appartenant au groupe des moisissures. C’est le cas du roquefort. La moisissure qui permet de l’obtenir est spécifique des grottes de la région de Roquefort. Il s’agit du Penicillium roquefortii.

Photographie de Penicillium roquefortii observé au microscope
Epithélium buccal

L’épithélium buccal est la couche la plus superficielle de la joue. Il est facile d’en prélever des cellules sans douleur. Au passage, on récolte des bactéries.

Photographie de cellules d’épithélium buccal observées au microscope.

TP Observation de microbes au microscope

 

 

La taille des microbes

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max. »

Max : « Bonjour 🙂 Qui veut faire le petit rappel ? »

Léo : « Nous n’avons pas beaucoup avancé encore. Nous avons vu que les microbes sont des êtres vivants invisibles à l’œil nu. »

Samuel : « Il y a des bactéries, des virus, des protozoaires, des champignons microscopiques et les micro-acariens. »

Léo : « Dans chacun de ces groupes, il y en a qui rendent malade. On dit qu’ils sont pathogènes. Toutefois la plupart n’ont aucun effet. Qu’ils soient là ou pas ça ne change rien. Il existe des microbes bénéfiques comme les bactéries et les moisissures qui permettent de faire les fromages ou le pain et puis il y en même qui sont indispensables. C’est le cas par exemple des bactéries du microbiote intestinal humain sans lequel on ne va pas bien. »

Max : « 1012 à 1014 bactéries appartenant à environ 120 espèces… Il y a également des virus dont des bactériophages qui se développent au détriment de nos chères bactéries. C’est un véritable écosystème 🙂 Aujourd’hui nous allons nous intéresser à la taille des microbes. Savez-vous effectuer un calcul ? »

Léo : « Normalement oui. Mais ça va dépendre du calcul. »

Max : « Rien de difficile. Vous allez calculer les tailles réelles de microbes en utilisant une barre d’échelle. Petit exemple de proportionnalité. J’espère que vous vous souvenez des sous multiples du mètre et que vous savez les convertir. Pour plus de facilité nous utiliserons les puissances de dix. »

Samuel : « Ça devrait aller 🙂 « 

Max : « Je vous fais le premier calcul comme exemple. »

Demodex sp., micro-acrarien de la poussière

Max : « Comme vous le voyez, la barre d’échelle représente 30 μm = 0,000 030 m = 30.10-6 m. Sur mon écran, cette barre d’échelle mesure 4,5 cm = 0,045 m = 4,5.10-2m. Vous suivez ? »

Léo : « Oui monsieur Max. »

Max : « Sur mon écran, l’animal mesure environ 12 cm = 0,12m = 12.10-2m. »

Max : « J’ai fait avec les puissances de dix et avec les nombres décimaux. Maintenant je fais le produit en croix. »

x = (30.10-6 x 12.10-2)/4,5.10-2 = 80.10-6 m.

Ce charmant petit animal mesure environ 80.10-6 m ou 80 μm. Voilà 🙂 « 

Léo : « Ce n’est pas trop difficile. »

Max : « Alors tu vas faire l’exemple suivant Léo. »

Photographie d’une paramécie observée au microscope. Les paramécies sont des animaux unicellulaires qui vivent à la surface des eaux calmes, stagnantes.

Léo : « A l’écran, la barre d’échelle mesure 7 mm = 0,007 m = 7.10-3 m. Elle représente 10 μm = 0,000 010 m = 10.10-6 m. A l’écran, la paramécie mesure 14 cm = 0,14 m = 14.10-2 m. Je fais le tableau de proportionnalité. »

Léo : « Maintenant je fais le produit en croix. x = (14.10-2 x 10.10-6) / 7.10-3 = 200.10-6m. La paramécie mesure donc 200.10-6m soir 200 μm. »

Max : « C’est bien Léo. Samuel, tu vas faire le troisième exemple. Voici l’image que tu vas utiliser. »

Photographie de virus H1N1. Ce virus est à l’origine d’une forme particulière de la grippe.

Samuel : « Oulala ! Il est tout petit ce virus ! La barre d’échelle représente 100 nm c’est-à-dire 100.10-9m. A l’écran, elle mesure 7 mm = 0,007 m = 7.10-3m. Le diamètre d’un de ces virus est de 5 mm à l’écran soit 5.10-3 m. Il faut faire le tableau de proportionnalité maintenant. »

Samuel : « J’en arrive au produit en croix. x= (5.10-3 x 100.10-9)/7.10-3 = 74,42.10-9m. Ce virus est vraiment tout petit puisqu’il ne mesure que 70 nm environ. »

Max : « Apparemment vous savez effectuer un calcul. Je vous donne deux autres images. Vous pourrez vous amuser à calculer la taille réelle de chacun des microbes qu’elles représentent. Pour le moment, vous pouvez filer en récréation. »

Samuel et Léo : « Merci monsieur Max. Au revoir monsieur Max ! »

Photographie d’une amas de bactéries Escherichia coli observées au microscope optique.
Photographie d’un bactériophage T4 observé au microscope électronique.

Séance suivante

« Tous pareils, tous différents ». La leçon

DES CARACTÈRES PHYSIQUES

« Tous pareils, tous différents. » André Langaney

I. LES CARACTÈRES SPÉCIFIQUES ET LEURS VARIATIONS INDIVIDUELLES.

Une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde.

Tous les individus d’une même espèce ont des caractères physiques communs qu’on ne retrouve pas chez les autres espèces. Ce sont des caractères spécifiques. Un caractère spécifique est un caractère physique qui n’appartient qu’à une espèce.

Les caractères spécifiques humains sont, entre autres : la bipédie exclusive, un cerveau très développé, un langage à double articulation et des empreintes digitales.

Au sein d’une espèce, les individus sont différents en raison des variations individuelles des caractères spécifiques. Tous les êtres humains ont des empreintes digitales, mais elles sont différentes chez chaque être humain.

Max : « Avez-vous des questions ? »

Samuel : « Oui monsieur Max. Pourriez-vous préciser ce que vous entendez par un langage à double articulation ? »

Max : « Oui Samuel. Vous avez remarqué que les langues humaines comportent des mots formés de syllabes. C’est le premier niveau d’articulation. Et ces mots sont organisés en phrases grâce à des règles de grammaire. C’est le second niveau d’articulation. »

Samuel : « Merci monsieur Max. »

Léo : « Il n’y a que chez l’humain qu’on retrouve ce langage ? »

Max : « Les recherches montrent que beaucoup d’animaux ont eux aussi des langages. Ainsi, chez les marmottes, des cris peuvent avertir qu’un prédateur arrive par les airs du côté de la montagne ou que le danger vient du sol du côté de la vallée. Ce langage a donc un vocabulaire assez précis. Chez certains oiseaux, un cri équivalent à un mot change de sens en fonction de sa place dans le chant. Pour être juste, il faudrait dire que le langage humain est plus complexe que celui des autres animaux. »

Léo : « Merci monsieur Max. »

Max : « Avant de terminer, puisqu’il nous reste un peu de temps, je voudrais vous faire lire un texte qui vous permettra de mieux comprendre l’infinie diversité des individus au sein d’une espèce. »

« Dire que les êtres humains sont tous différents ! […] comment est-ce possible ? Imagine que dix personnes se réunissent pour bricoler un masque. Chaque participant arrive avec une partie du visage. Ainsi Claude et Alain ont apporté chacun un nez, Jeanne et Mélanie chacune une bouche, Christian et Pascal chacun deux couleurs d’yeux… […] Avec ce matériel, il est possible de faire toutes sortes de masques différents. Avec seulement deux yeux et deux bouches, le masque peut avoir 4 visages différents. S’ils utilisent en plus les deux mentons, ils disposeront de 8 visages […] Fais le calcul : pour 10 traits, tu trouveras 1024 visages, et pour 30 traits, plus de 1 milliards de visages. »

A. Jacquard et M.-J. Auderset, Moi, je viens d’où ?, Le Seuil, 2002, p. 15

Séance suivante

 

Les caractères physiques

Vous savez tous qu’une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde. Cela signifie que les petits pourront se reproduire à leur tour quand ils seront en âge de le faire. Vous avez remarqué que la définition d’espèce comprend deux parties : le critère de ressemblance et le critère de fécondité. Le critère de ressemblance fait appel aux caractères physiques des individus appartenant à l’espèce étudiée. Certains des caractères des individus sont communs à tous les individus de l’espèce. Mais d’autres sont des traits particuliers à un individus alors que d’autres encore se retrouvent dans des familles, des groupes… Nous allons apprendre à distinguer ces différents caractères et apprendre un peu de vocabulaire. C’est très utile le vocabulaire pour construire une réflexion.

Au passage nous allons commencer à réfléchir à la position de l’espèce humaine dans le règne animal. La première chose à faire est d’essayer de définir l’espèce humaine. Vous allez voir que ce n’est pas si facile qu’on le pense 🙂

Voilà pour la courte introduction au premier chapitre. Il est maintenant temps de nous mettre au travail.

Commencer le chapitre

Les microbes (Illustrations)

Bonjour à tous ! Lors de la séance précédente je vous ai parlé des microbes. Vous savez maintenant que le groupe des microbes est artificiel. Il ne correspond pas à un groupe biologique puisqu’il est fondé uniquement sur un seul critère : la taille ! Pour être un microbe, il faut être invisible à l’œil nu. Maintenant que vous savez ça je peux vous montrer quelques uns de ces microbes. Commençons par les bactéries…

LES BACTÉRIES…

A quoi ressemble une bactérie ? Un schéma devrait vous aider à comprendre…

Schéma d’une bactérie observée au microscope (source : lesbacteries-canalblog.com)

Une bactérie possède une membrane et un cytoplasme. C’est donc bien une cellule. Mais elle n’a pas de noyau ! Le chromosome, où le filament d’A.D.N., se trouve directement dans le cytoplasme. Les bactéries ont une paroi et certaines ont des filaments qui leur permettent de se déplacer. Mais quelle est la taille d’une bactérie me demanderez-vous ? Ça dépend de la bactérie mais, bien évidemment, les bactéries sont invisibles à l’œil nu. Les photographies suivantes vous donneront une idée de la taille de bactéries moyennes…

Photographies de bactéries Escherichia coli sur une tête d’épingle observée au microscope électronique à balayage.

Bon, d’accord, il n’y a pas d’échelle. Mais ce n’est pas moi qui ai fait le document ! La bactérie est Escherichia coli. En voici un autre portrait…

Photographie de bactéries Escherichia coli observées au microscope électronique à balayage (Source : wikipédia)

Là, il y a une échelle. La graduation en bas à droite représente 2 micromètres soit 2 millionièmes de mètre… Escherichia coli mesure donc quelques microns…

Escherichia coli est une bactérie très abondante dans l’intestin grêle humain. Elle représente 80% de la masse du microbiote intestinal. Elle est donc indispensable à notre bon fonctionnement. Malheureusement il existe des souches pathogènes qui provoque des gastro-entérites, des infections urinaires, des méningites…

Voici une autre espèce bactérienne…

Photographie de Staphylocoques dorés observés au microscope électronique à balayage.

Il s’agit de staphylocoques dorés. Entre 15 et 30 % de la population en a sur la peau sans aucun effet. On la trouve également dans les fosses nasales, sur les muqueuses ou un peu dans le tube digestif. Parfois, elle devient pathogène et peut provoquer des infections graves.

Vous avez remarqué que les bactéries n’ont pas toutes la même forme. Les E. coli sont en bâtonnets. Les Staphylocoques sont sphériques… Voici une classification des bactéries selon leur forme…

Classification des bactéries selon leurs formes (source : www.astrosurf.com)

On pense souvent que les bactéries sont nos ennemies mais souvenez-vous que c’est grâce à elle que nous faisons des yaourts (Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus), des fromages (Brevibacterium linens est responsable de la coloration orangée des fromages à ‘odeur de pied’ comme le munster, le livarot…)…

LES VIRUS…

En ce moment, les coronavirus occupent le devant de la scène en particulier le SRAS-CoV-2 qui provoque la maladie CoViD-19. Il s’agit du Syndrome Respiratoire Aigu et Sévère provoqué par le CoronaVirus apparu en 2019. Les coronavirus forment une famille de virus qui se ressemblent beaucoup. Voici une photographie du coronavirus à l’origine du Syndrome Respiratoire Aigu et Sévère (SRAS).

Photographie du coronavirus à l’origine du SRAS observé au microscope électronique à transmission.

Des molécules de surface forment comme une couronne autour du virus d’où l’appellation coronavirus. Les coronavirus provoquent presque tous des infections respiratoires.

Il existe des tas de virus qui sont pathogènes pour une ou plusieurs espèces. La plupart du temps, un virus qui touche une espèce est inoffensif pour les autres. Mais parfois, non…

Voici des virus étranges…

Photographie de bactériophages T4 au microscope électronique (source : Wikipédia).

Ces étranges virus semblent avoir des pattes. Ils s’attaquent à des bactéries dans lesquelles ils injectent leur petite information génétique. Celle-ci s’insère dans le filament d’A.D.N. de la bactérie qui se met à fabriquer des virus. Parfois, la bactérie produit tellement de virus qu’elle finit par éclater et meurt.

Si vous vous souvenez de ce que vous avez lu il y a quelques minutes, vous savez que certaines bactéries nous rendent malades. Certains médecins ont eu l’idée géniale d’utiliser des bactériophages pour détruire les bactéries qui nous rendent malades ! Malheureusement, ces recherches ne sont pas encore vraiment autorisées en France… Je vous mets un lien vers un excellent documentaire…

L’excellent documentaire

Les virus ne seraient donc pas tous mauvais pour nous. Certes certains sont pathogènes. D’autres n’ont aucun effet. Et les bactériophages pourraient sauver des vies…

LES PROTOZOAIRES…

Les protozoaires sont des animaux unicellulaires. Ils sont bien sûr très petits. Voici un exemple.

Photographie d’une goutte de sang d’un individu infecté par le trypanosome observée au microscope. On voit des globules rouges et quatre trypanosomes. Un globule rouge mesure environ 7 micromètres de diamètre. (source : Wikipédia)

Une espèce de trypanosome, Trypanosoma gambiense, peut infecter l’Homme. La transmission, ou contamination, se fait par une mouche bien connue : la mouche Tsé-Tsé. L’infection va donner une maladie appelée maladie du sommeil. L’individu malade est de plus en plus fatigué, s’endort puis tombe dans le coma avant de trouver la mort…

Un autre protozoaire peut infecter l’Homme. Il s’agit du plasmodium. Il est véhiculé par un moustique, le moustique anophèle. Les femelles anophèles piquent pour se nourrir de sang. Je rappelle qu’un tel animal est qualifié d’hématophage. Si l’individu piqué est infecté par le plasmodium, il passe dans la moustique avec le sang prélevé. Une partie des plasmodiums vont aller se placer dans les glandes salivaires de la moustique. Lorsqu’elle pique, elle injecte un peu de salive qui contient un anticoagulant (produit qui évite au sang de former des croûtes). En injectant l’anticoagulant, la moustique infecte une autre personne…

Le plasmodium (Plasmodium falciparum) provoque le paludisme autrefois appelé fièvre jaune, fièvre des marais ou malaria. Cette maladie touche surtout les pays situés entre les tropiques où il provoque la mort d’environ 1 000 000 de personnes par an. Le plasmodium est l’animal qui fait le plus de morts sur terre…

Notons que les personnes touchées par la drépanocytose, ou anémie falciforme, ne développent pas le paludisme. Dans les pays où le paludisme sévit, jusqu’à 60 % de la population est touchée par la drépanocytose. Ceci s’explique aisément. Les enfant non atteints par la drépanocytose meurent jeunes. Les autres, porteurs d’au moins un allèle de la maladie, transmettront donc probablement l’allèle à leur descendance. Une maladie gênante au delà des tropiques est donc un avantage notable pour la survie sous les tropiques… A méditer…

LES MICRO-ACARIENS…

Commençons par une photographie…

Photographie au microscope électronique d’un micro-acarien.

Observons cet animal. Bien que très petit, il possède un squelette externe appelé cuticule. Il possède quatre paires de pattes articulées et son corps comporte deux parties : un céphalothorax et un abdomen. Vous avez reconnu la description d’un Arachnide. C’est donc un cousin des Araignées. Les pièces buccales forment un rostre ce qui en fait un acarien. Comme il est invisible à l’œil nu on parle de micro-acarien.

Les micro-acariens sont connus pour provoquer des allergies. Soyons justes avec eux ! Ils n’y sont pas pour grand chose ! Ce ne sont pas les animaux qui provoquent les allergies ! Ce sont leurs excréments ! Si vous dressez bien vos micro-acariens ils cesseront de faire caca partout et vous n’aurez plus d’allergies 🙂

Les micro-acariens, comme les autres microbes, sont absolument partout. Il y en a dans les lits. Un lit en contient environ… beaucoup de millions. Les micro-acariens des lits appartiennent surtout à l’espèce Dermatophagoïdes pteronyssinius. 

Photographie au microscope électronique à balayage de Dermatophagoïdes pteronyssius (Source : www.med.ch).

Les micro-acariens des lits se nourrissent des cellules mortes que nous perdons à tout moment… Ils vivent, se nourrissent, de reproduisent, font caca, meurent… dans nos lits… J’ai lu, il y a quelques temps, un article de journal qui disait qu’un oreiller moyen en France était composé d’environ 30 % d’acariens. A votre place je brûlerais immédiatement mon oreiller 🙂

Quelles mesures pour se débarrasser des micro-acariens ?

D’autres acariens vivent dans notre peau. Ils y creusent des tunnels. La plupart du temps on ne le sait pas. Mais le sarcopte de la gale peut provoquer le gale. C’est une maladie de la peau…

Photographie au microscope électronique à balayage du sarcopte de la gale.

Un dernier exemple. Il s’agit de Demodex folliculorum. Voici son portrait.

Photographie au microscope électronique à balayage du micro-acarien Demodex folliculorum.

Ce micro-acarien vit sur le visage 🙂 Plus un humain est âgés, plus il y a de probabilités qu’il soit porteur de ce charmant animal. Le demodex se nourrit de sébum et de cellules mortes et se reproduit dans les follicules pileux. Je m’arrête là pour ne pas heurter le sensibilité des plus sensibles 🙂

LES CHAMPIGNONS MICROSCOPIQUES…

Commençons par les méchants, ceux qui provoquent des maladies appelées mycoses. Beaucoup d’organes peuvent être touchés mais les mycoses les plus fréquentes touchent la bouche, les pieds, le vagin…

Pour la bouche, il peut s’agir du muguet buccal. Il se repère au tâches blanches qui apparaissent sur la langue, le palais et les gencives. On observe des filaments ou des plaques provoqués par l’accumulation de levure de l’espèce Candida albicans présente naturellement chez les humains. Cette mycose est fréquente chez les bébés de moins de deux mois dont le système immunitaire est encore peu fonctionnel. Cette maladie apparaît également chez les personnes immunodéprimées…

Plusieurs mycoses apparaissent au niveau des pieds : sous les ongles, entre les orteils… Elles sont également causées par des champignons unicellulaires qui se régalent de l’humidité et de la chaleur qui règnent sous les chaussettes 🙂

Je n’en dirai pas plus sur les mycoses.

Passons aux gentils champignons. Il y en a beaucoup. Je ne sais pas par lequel commencer… Mmmm… Si ! Saccharomyces cerevisae ! Vous en mangez tous ! Et vous seriez très malheureux sans cette levure ! C’est la levure qui sert à faire gonfler le pain ! Sans elle, pas de pain ! Ni grec ! Ni pâte à pizza ! Ni hamburger ! Merci Sacchoromyces cerevisae ! Tiens, je mets ta photo !

Photographie au microscope électronique à balayage de Sacchoromyces cerevisae (Source : Wikipedia)

On lui doit aussi le vin et la bière. Oui, je sais, ce n’est pas bien de boire de l’alcool. Mais il y a une raison à la consommation d’alcool autrefois ! Essayez de garder de l’eau sans qu’elle deviennent un bouillon de culture ! Allez-y ! Essayez ! C’est facile d’avoir l’eau au robinet et de râler parce qu’elle a un goût qui vous déplaît ! Ou d’acheter de l’eau en bouteilles qui polluent tout ! Nos ancêtres n’avaient pas tout ça ! Alors ils ont inventé les boissons alcoolisées. Tout le monde sait que l’alcool désinfecte ! Bon, d’accord, après ils ont pris l’habitude de trop en boire. Mais c’est un fait : boire de l’alcool donne soif ! Voilà voilà… Inutile de dire qu’il ne faut pas boire d’alcool. Ce n’est ni utile ni malin. Et Saccharomyces cerevisae peut se contenter de faire du pain…

Vous prendrez bien un peu de fromage avec votre pain ? Du roquefort ? Du camembert ? Eux aussi sont faits grâce à des champignons unicellulaires. Plus particulièrement des moisissures. Penicillium roqueforti pour le roquefort et Penicillium camemberti pour le camembert 🙂 Le lait aussi est difficile à conserver. Alors les humains ont inventé les fromages pour le conserver. Pour conserver le lait ils le font moisir 🙂 Il y a des tas de fromages fait à base de champignons. Je ne les connais pas tous. Nous avons donc, le pain, le vin, le fromage qui sont fait à partir de champignons microscopiques. Ajoutons le yaourt et d’autres fromages faits grâce à des bactéries et nous avons la base de l’alimentation européenne. Surtout que pour la charcuterie, il faut aussi des fermentations avec des levures…

Voilà, nous arrivons au terme de cet article pas très appétissant. Quoi que… C’est grâce aux microbes que nous mangeons, que nous digérons (voir l’article sur le microbiote intestinal qui je vais bientôt écrire), que nous allons bien… Mais c’est vrai aussi que c’est à cause des microbes que nous sommes malades… Que retenir de cela ? Simplement que l’équation microbes = maladie est fausse… Et que nous avons tous une responsabilité en matière de contamination. Mais ça, c’est une autre histoire…

En complément du complément, avant que je ne rédige un autre article :

un autre documentaire

Voilà, maintenant que vous avez lu cet article, vous mourrez moins bête 🙂

Séance suivante

« Tous pareils, tous différents ». 2- Tous différents

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Qui veut faire le petit rappel ? »

Samuel et Léo : « Moi monsieur ! Moi ! »

Max : « Choix ô combien cruel ! Léo… »

Léo : « Nous avons vu que tous les êtres humains sont pareils grâce à la classification de l’Homme sous forme de groupes emboîtés parmi les Vertébrés. »

Max : « C’est un bon résumé 🙂 Samuel, peux-tu en dire plus ? »

Samuel : « Ce n’est pas facile… L’Homme a un squelette en os. Ses nageoires charnues sont transformées en membres. Il a des poils et une paire de mamelles thoraciques. Il a des ongles aussi. Mais là, j’ai parlé des Primates. Parmi les Primates il se distingue par le fait qu’il se tient debout et qu’il a un cerveau très développé. J’espère n’avoir rien oublié. »

Max : « Tu n’as rien oublié Samuel 🙂 C’est très bien. »

Léo : « Monsieur Max, j’ai bien étudié ma leçon et je crois que j’ai d’autres caractères physiques qui distinguent l’Homme des autres primates. »

Max : « Je t’écoute Léo. »

Léo : « Il est pas très poilu. Même que parfois on lit que c’est ‘un singe nu‘. Et puis ses pouces des pieds ne sont pas opposables aux autres doigts. »

Max : « Très bien Léo. »

Samuel : « Et puis il a la face plate ! L’orang-outan ou le babouin ont comme un museau ! »

Max : « C’est vrai aussi ! Vous venez de compléter la liste des caractères spécifiques humains. »

Léo : « Les caractères spécifiques ? C’est comme cela qu’il faut appeler les caractères qu’on ne trouve que dans une seule espèce ? »

Max : « Oui Léo. Nous le noterons dans la leçon. Maintenant parlons des différences… »

Léo : « Pfff… Ce n’est pas facile à expliquer… »

Max : « Prenez des exemples si cela vous parait plus facile. »

Samuel : « Il y a des tas de caractères physiques qui varient légèrement ou beaucoup selon les individus : la taille, la musculature, la couleur des yeux, des cheveux, de la peau… »

Léo : « Et en combinant toutes ces variations on arrive à des individus uniques. »

Max : « Je prendrais un dernier exemple. A ma connaissance, les humains sont les seuls Primates qui ont des empreintes digitales. »

Léo : « C’est un caractère spécifique alors ! »

Samuel : « Mais chaque être humain a ses propres empreintes digitales ! Nous avons expliqué le paradoxe du début ! Nous sommes bien tous pareils et tous différents ! »

Max : « Et oui 🙂 Bien, prenez vos cahiers et notons la leçon. »

Note de Max : Pour des raisons pratiques je préfère que cette leçon se trouve dans un autre article. Cliquez sur le lien 🙂

Séance suivante

Le support de l’information génétique

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Alors… Le petit rappel, qui veut le faire ? »

Samuel et Léo : « Moi monsieur Max ! »

Max : « Quel enthousiasme ! Et quel choix douloureux… Samuel, nous t’écoutons. »

Samuel : « Nous avons vu qu’il existe une information génétique dans la cellule-œuf. Elle permet à l’individu de se construire puisqu’elle code pour ses caractères héréditaires et leurs variations individuelles. »

Max : « Oui Samuel. Léo, tu prends la suite s’il te plaît. »

Léo : « Des expériences de transfert de noyau ont montré que cette information génétique est localisée dans le noyau des cellules. »

Max : « Très bien. Comme d’habitude. »

Léo : « Monsieur Max, j’ai une question ! »

Max : « Je t’écoute Léo. »

Léo : « Monsieur Max, une information ça se touche pas. C’est pas matériel. Il faut un support pour la mettre dessus. Comme… Comme une histoire qu’on imprime sur les feuilles d’un livre. Quelle est le support de l’information génétique ? »

Max : « Excellente question Léo ! C’est exactement ce que j’avais prévu de vous faire. Je la répète : quel est le support de l’information génétique ? Sachant que cette information se trouve dans le noyau des cellules, comment pourrions-nous répondre à notre question ? « 

Samuel : « On pourrait observer les noyaux de cellules au microscope ! »

Max : « Très bonne idée Samuel ! »

Léo : « Nous allons utiliser le microscope monsieur Max ? »

Max : « Oui. Je vais vous laisser observer différents types cellulaires puis je vous donnerai un document. »

Un peu plus tard

Samuel (à Léo) : « C’était bien le microscope 🙂 »

Max : « Un peu de calme ! Chuuuut ! Bien, voici le document que je vous avais annoncé… »

Photographie de cellules de racine d’ail observées au microscope

Samuel : « Ça ressemble à ce qu’on a observé avec le microscope ! »

Max : « Oui Samuel. Alors ? Que voyez-vous ? »

Léo : « Il y a des machins qui ont été colorés. D’après la légende, ce sont les chromosomes. »

Max : « Tu éviteras de dire des ‘machins‘ Léo s’il te plaît. Disons que des éléments situés dans le noyau ont pris la couleur. Nous n’allons pas le démontrer mais ce sont les chromosomes qui sont le support de l’information génétique. Nous allons noter la leçon. Prenez vos cahiers. »

III. LE SUPPORT DE L’INFORMATION GÉNÉTIQUE.

L’information génétique est localisée dans le noyau des cellules. L’observation au microscope de cellules colorées artificiellement montre que le noyau contient des éléments qui ont été appelés chromosomes. Les chromosomes sont le support de l’information génétique.

Les chromosomes sont constitués d’un filament d’A.D.N. Ce filament peut se condenser ou se décondenser, ce qui fait que l’aspect des chromosomes n’est pas toujours le même.

Schéma d’un chromosome observé au microscope électronique

Max : « Voilà, c’est tout pour aujourd’hui. Mais avant de vous laisser partir, je vous distribue un autre document. Je vous conseille de bien l’étudier si vous voulez comprendre la suite des cours. C’est très important. Le voici… »Doc-Support-de-linformation-génétique

Max : « Voilà, maintenant vous pouvez filer ! »

Samuel  et Léo : « Au revoir monsieur Max ! »

Séance suivante

Les barrières naturelles

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. Vous êtes tous là… Léo, veux-tu faire le petit rappel de début de cours s’il te plaît. »

Léo : « Oui monsieur Max. Nous étudions les microbes. Un microbe est un être vivant de petite taille, invisible à l’œil nu. Pour l’observer il faut utiliser un microscope. Les microbes appartiennent à différents groupes biologiques. Il y a les bactéries, les virus, les protozoaires, les micro-acariens, les micro-champignons… Tous les microbes ne rendent pas malades. Ce sont seulement les microbes pathogènes qui rendent malades. Certains nous sont indispensables comme ceux qui constituent le microbiote intestinal ou le microbiote buccal. Et il y a ceux qui nous permettent de faire des aliments comme le fromage, le yaourt… »

Max : « Très bien Léo. Samuel, veux-tu prendre la suite ? »

Samuel : « Oui monsieur Max. Un être vivant ou un objet qui ne porte aucun microbe est dit stérile. Mais c’est très difficile d’obtenir un objet stérile. Pour un être vivant c’est impossible. C’est à cause de la contamination. La contamination est la transmission de microbes d’un objet ou d’un être vivant à un autre objet ou un autre être vivant. On limite souvent la contamination à la transmission de microbes entre individus mais c’est une imprécision. Les objets sont souvent source de contamination. L’air, l’eau ou même les aliments peuvent nous contaminer. »

Max : « Bravo mes petits, vous connaissez parfaitement vos leçons.

Léo : « Monsieur Max puis-je poser une question ? »

Max : « Bien sûr Léo. »

Léo : « Monsieur Max, comment se fait-il que nous ne soyons pas toujours malades avec tous les microbes qu’il y a dans notre environnement ? D’autant plus que dès que je prête mon crayon à Samuel je le contamine. Et là, je vous contamine en vous parlant. Je suis désolé de vous contaminer monsieur Max. »

Max :  » 🙂 Il ne faut pas être désolé Léo. Je te rends ta contamination en te répondant 🙂 Mes petits, vous avez le don de poser les bonnes questions ! Qu’est ce qui fait que nous ne sommes pas malades plus souvent ? C’est ce que nous allons étudier dans la suite du cours. Commençons pas nos barrières naturelles. »

Samuel : « Il y a la peau monsieur Max ! Elle empêche les microbes d’entrer ! »

Max : « Pas seulement. Vous ai-je déjà schématisé un être vivant ? »

Léo : « Oui monsieur Max 🙂 Vous aviez fait un cercle au tableau. »

Samuel : « Le trait représente la peau. Ce qui est à l’intérieur du cercle est dans l’organisme, alors que ce qui est à l’extérieur du trait est dans l’environnement. »

Max : « Exact Samuel ! Affinons un peu. Je peux ajouter le tube digestif à ce schéma… »

Max : « Voilà ! Nous pourrions ajouter d’autres organes comme les poumons ou la vessie mais cela compliquerait inutilement pour le moment. »

Léo : « Si je me souviens bien, ce qui est dans le tube digestif n’est pas dans le corps. »

Samuel : « Ben oui ! Pour entrer dans le corps il faut traverser le trait noir -la peau- ou le trait rouge… Monsieur Max, le trait rouge, que représente t-il ? »

Max : « Encore une bonne question ! Ce sont les muqueuses digestives. On appelle muqueuses les revêtements des cavités externes de l’organisme. »

Samuel : « Si je comprends bien, au niveau du visage il y a la peau. Puis les lèvres et si on continue dans la bouche on trouve la muqueuse buccale. »

Max : « Oui Samuel. »

Léo : « Ou alors il y a les narines avec la muqueuse nasale. »

Max : « Nous pourrions ajouter les muqueuses œsophagienne, gastrique, intestinale, vaginale… Toutes les muqueuses produisent des sécrétions appelées mucus qui contribuent, entre autres, à empêcher les microbes d’entrer. »

Samuel : « Comme ce qu’on a dans le nez ? »

Max : « Oui Samuel. Excellent exemple puisque la muqueuse nasale produit ce qu’on appelle de la morve. Je sais, ce n’est pas très ragoutant. En latin, mucus signifie morve. »

Léo : « Alors, en résumé, le corps est protégé par la peau et les muqueuses qui produisent des mucus. Grâce à ces barrières naturelles les microbes ne peuvent pas entrer dans l’organisme. »

Samuel : « Mais il peuvent être à la surface de la peau ou dans les cavités naturelles. Ce n’est pas grave puisqu’ils sont toujours à l’extérieur du corps. »

Max : « Vous avez tout compris ! Je vous distribue deux documents pour préciser un peu ce que nous venons de voir puis nous noterons la leçon du jour. »

Léo : « Oulala ! Dix millions de microbes par centimètres carrés dans la paume de la main ! Et les élèves se serrent la main le matin pour se saluer ! »

Samuel : « Ils mélangent tous leurs microbes ! »

Léo : « Et les filles qui se font la bise ! Smack ! Smack ! Et hoplà les microbes plein le visage ! »

Samuel : « Bonjour la contamination ! »

Max : « C’est vrai, mais comme vous le disiez vous mêmes ils sont toujours à l’extérieur du corps… »

Léo : « Ils doivent bien trouver un moyen d’entrer ! »

Max : « Certes, nous verrons cela plus tard. Voici un autre document… »

Samuel : « Monsieur Max, je ne veux pas vous vexer mais ce schéma ressemble quand même un peu plus à un être humain. »

Max : « Tu ne me vexes pas Samuel. Mais mon schéma a le mérite de rendre compte de tous les animaux qui ont un tube digestif allant d’une bouche à un anus 🙂 « 

Léo : « Monsieur Max, qu’est ce que ça veut dire ‘pH’ ? »

Max : « Vous le verrez en chimie… Disons que c’est un indice d’acidité. Un pH neutre est à 7. Tout ce qui a un pH inférieur à 7 est acide. Tout ce qui a un pH supérieur à 7 est basique. Les microbes sont généralement adapté à un pH de 7. »

Léo : « Donc si c’est acide ou basique ils n’aiment pas. Ils sont même peut-être détruits. »

Max : « Oui Léo. »

Samuel : « Il y a donc des barrières mécaniques et chimiques qui nous protègent naturellement contre les microbes. »

Max : « Et nous pouvons noter la leçon. Prenez vos cahiers et notez. »

III. LES BARRIÈRES NATURELLES.

Le corps est protégé des microbes par les barrières naturelles que sont la peau et les muqueuses. Les muqueuses recouvrent les cavités externes de l’organisme. Elles produisent des mucus. Les barrières naturelles offrent donc une protection mécanique mais aussi chimique. Grâce à ces barrières naturelles, les microbes restent à l’extérieur du corps.

Séance suivante

Le caryotype des gamètes

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Léo : « Monsieur Max, qu’allons nous voir aujourd’hui ? »

Max : « Quelle impatience ! Nous avons vu la transmission de l’information génétique au sein d’un organisme. Nous allons maintenant voir la transmission de l’information génétique d’une génération à l’autre. »

Samuel : « Des parents aux enfants ? »

Max : « Oui Samuel. Mais avant, pouvez-vous me rappeler ce qu’il faut pour faire un nouvel individu ? »

Léo : « Moi monsieur Max ! »

Samuel : « Non, moi ! »

Max : « C’est une vraie torture pour moi d’avoir à choisir entre deux si bons élèves… Commençons par Léo. Ne m’en veux pas Samuel. Tu seras interrogé rapidement. Léo… »

Léo : « Pour faire un nouvel individu il faut une fécondation. »

Max : « Très bien ! Samuel, rappelle nous la définition de la fécondation s’il te plaît. »

Samuel : « La fécondation est la rencontre suivie de la fusion d’un ovule et d’un spermatozoïde. Elle donne naissance à une cellule-œuf à l’origine d’un nouvel individu. »

Max : « Encore une bonne réponse. Léo, peux-tu nous faire le schéma de la fécondation ? »

Léo : « Au tableau monsieur Max ? »

Max : « Oui Léo.

Léo s’exécute…

Max : « Très bien. Je complète un peu… Voilà ! »

Max : « Samuel, combien y a t il de chromosomes dans une cellule-œuf humaine ? « 

Samuel : « Dans une cellule-œuf humaine il y a 46 chromosomes c’est-à-dire 22 paires de chromosomes homologues et deux chromosomes sexuels. S’il sont identiques on les nomme X et X et c’est une cellule-œuf de fille. S’ils sont différents on nomme le grand X et le petit Y et c’est une cellule-œuf de garçon. »

Max : « C’est très bien tout ça ! Voyez-vous le problème qui se pose ? »

Léo : « Heu… »

Samuel : « Ben… »

Max : « Pensez aux gamètes. »

Léo : « Monsieur Max, pourriez-vous rappeler ce qu’est un gamète ? »

Max : « Oui Léo. Le mot gamète est synonyme de cellule reproductrice. Je vous aide encore un peu. Regardez les gamètes et pensez aux chromosomes… »

Léo : « Je vois ! On peut se demander combien de chromosomes possèdent les gamètes ! »

Samuel : « Il me semble logique de penser qu’ils en ont 23 chacun. »

Max : « Oui et oui  🙂 Mais ce que tu dis, Samuel, n’est qu’une hypothèse. Comment pourrions-nous la vérifier ? »

Léo : « Nous avons déjà vu que pour dénombrer les chromosomes d’une cellule il faut faire son caryotype. Nous pourrions faire le caryotype des gamètes monsieur Max. »

Max : « Très bien. Je vous distribue un document. Vous allez l’étudier en silence puis nous mettrons en commun ce que vous en tirez. Il vous faut en décrire les différents éléments et en tirer un nouveau problème scientifique. Voici le document… »

Un peu plus tard…

Max : « Alors ? Vous en sortez vous ? »

Léo : « Je cherche encore le problème monsieur Max. »

Samuel : « Moi aussi. Je pense avoir terminé la description. »

Max : « Alors je t’écoute Samuel. »

Samuel : « Nous voyons que dans les testicules il y a des cellules-souches de spermatozoïdes qui ont 46 chromosomes. Dans les ovaires, il y a des cellules-souches des ovaires qui ont 46 chromosomes également. »

Max : « Très bien ! Léo, la suite s’il te plaît. »

Léo : « Nous voyons que les ovules n’ont que 23 chromosomes. Il n’y a pas de paires mais toujours un seul chromosome. Et le chromosome sexuel est toujours X. Dans les spermatozoïdes il y a aussi seulement 23 chromosomes. Mais le chromosome sexuel peut-être X ou Y. Il y a deux types de spermatozoïdes. »

Max : « C’est une bonne description. Bravo à tous les deux ! Voyez-vous le problème maintenant ? »

Léo : « Toujours pas… »

Samuel : « Moi non plus… »

Max : « Vous êtes-vous demandés ce que sont les cellules-souches ? »

Léo : « Non ! »

Samuel : « Non plus. Mais je sais quand même ! Ce sont les cellules à partir desquelles sont fabriquées les gamètes ! »

Léo : « Oui ! Et je vois le problème maintenant ! Comment peut-on fabriquer des cellules qui n’ont que 23 chromosomes à partir de cellules qui en ont 46 ? Parce que la mitose assure une reproduction conforme des cellules. Ça peut pas être par mitose ! »

Max : « Mes petits 🙂 Vous ai-je déjà dit le plaisir que j’éprouve à être votre professeur ? Bien, nous pouvons noter tout cela. Prenez vos cahiers et notez la leçon. »

LA TRANSMISSION DE L’INFORMATION GÉNÉTIQUE D’UNE GÉNÉRATION À L’AUTRE.

Rappel : Pour former un nouvel individu il faut une fécondation c’est-à-dire la rencontre suivie de la fusion d’un ovule et d’un spermatozoïde. Cela donne une cellule-œuf, première forme de l’individu.

Observation : Le noyau de la cellule-œuf contient 46 chromosomes.

Problème : Combien y a t’il de chromosomes dans les gamètes ?

I. LE CARYOTYPE DES GAMÈTES.

Un gamète est une cellule reproductrice. C’est le spermatozoïde chez l’homme et l’ovule chez la femme.

Les gamètes ont 23 chromosomes, un seul de chaque paire. L’ovule possède toujours le chromosome X alors que les spermatozoïdes peuvent avoir un chromosome X ou un chromosome Y.

Les gamètes sont produits dans les gonades à partir de cellules-souches ayant 46 chromosomes. (Les gonades sont les organes où sont produits les gamètes. Ce sont les ovaires ou les testicules.)

Problème : Comment produire des cellules à 23 chromosomes à partir de cellules à 46 chromosomes ?

Max : « Vous avez noté ? Alors rangez vos affaires et allez vous dégourdir les pattes en récréation. Amusez-vous bien 🙂 « 

Samuel et Léo : « Au-revoir monsieur Max ! »

Séance suivante

Modèle de cycle cellulaire

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. Comment allez-vous mes petits ? »

Léo : »Très bien monsieur Max, et vous-même ? »

Max : « Très bien mon petit Léo. Bon, il est temps de faire le petit rappel habituel. Qui est volontaire ? »

Samuel : « Moi monsieur Max ! »

Max : « Nous t’écoutons ! »

Samuel : « Nous avons vu, grâce à une étude de graphique, que les cellules qui vont se multiplier dupliquent leur A.D.N. Elles fabriquent une copie de leur A.D.N. afin de pouvoir donner un filament complet à chacune de leurs deux cellules-filles. C’est ce qu’on appelle la duplication de l’A.D.N. Notons que la cellule-mère n’existe plus à la fin de la multiplication cellulaire. Pour pouvoir distribuer leurs filaments d’A.D.N. elles les condensent en chromosomes doubles. Ils s’alignent à l’équateur de la cellule puis se coupent en deux et migrent vers les pôles de la cellule. Là, ils se décondensent en filaments simples et la cellule-mère peut se couper en deux cellules-filles identiques. »

Max : « Excellent résumé Samuel ! »

Léo : « Bravo Samuel ! Bravo ! »

Max : « Apparemment tout est compris. Je vais vous donner un petit exercice pour vérifier cela. Voici un document qui montre les étapes du cycle cellulaire schématisées. Il faut les remettre dans l’ordre et les commenter. Au travail ! »

Léo : « Monsieur Max, nous avons terminé ! »

Max : « Déjà ! Quelle efficacité ! Samuel ayant fait un brillant résumé tout à l’heure c’est à toi, Léo, de faire la correction de cet exercice. Montre moi ton travail. Mmmm… Mmmmmm… Excellent ! Au tableau mon petit ! Mais attends un instant. Nous allons nous servir de ton travail comme texte pour la leçon. Je note le titre du paragraphe au tableau. « 

III. MODÈLE DE CYCLE CELLULAIRE.

Le noyau, limité par l’enveloppe nucléaire, contient un filament simple d’A.D.N. coupé en quatre morceaux qui correspondent aux quatre futurs chromosomes.
Nous pouvons voir les deux paires de chromosomes doubles. Il y a donc eu duplication de l’A.D.N. puis le filament double s’est condensé en deux paires de chromosomes doubles.
L’enveloppe nucléaire n’est plus visible et les chromosomes se sont alignés à l’équateur de la cellule. Pour être précis ce sont les centromères des chromosomes qui sont alignés.
Les chromosomes doubles se sont scindés en deux. Chaque chromatide est devenue un chromosome simple. Et les chromosomes simples migrent vers les pôles de la cellule. En réalité il y a deux paires de chromosomes simples qui migrent vers chaque pôle.
A chaque pôle, 4 chromosomes simples se sont décondensés en 4 filaments simples. Une enveloppe nucléaire s’est reformée autour de ces filaments simples. Puis la cellule-mère s’est coupée en deux et nous avons maintenant deux cellules-filles identiques contenant exactement la même quantité d’A.D.N.

Modèle-de-cycle-cellulaire

Max : « Excellent travail mon petit Léo ! Vous êtes vraiment de brillants élèves ! Nous pouvons maintenant conclure ce chapitre. Prenez vos cahier et notez. »

Conclusion :

Le cycle cellulaire est l’ensemble des étapes qui constituent et délimitent la vie d’une cellule. Ce cycle est constitué d’une phase de croissance durant laquelle la cellule grossit, d’une phase lors de laquelle elle recopie son matériel génétique (duplication de l’A.D.N.) et d’une phase où celle-ci se divise (mitose) pour donner naissance à deux cellules filles identiques. Les cellules filles reproduiront ce cycle, et ainsi de suite.

La duplication de l’A.D.N. est une étape indispensable pour assurer la reproduction conforme des cellules.

Max : « Avez-vous des questions ? »

Léo : « Oui monsieur Max. Vous dites que les cellules grandissent au début du cycle cellulaire. Mais il me semble que nous avons vu que cette étape n’existe pas lors du développement embryonnaire. Ai-je bien compris ? »

Max : « Bonne question mon petit Léo. Vous savez qu’en biologie les règles absolues sont rares. En d’autres termes, il existe souvent des exceptions. Le développement embryonnaire est une période un peu particulière de la vie de l’individu. Surtout à son début. Le petit embryon se développe très vite. Peut-être avez-vous remarqué qu’une cellule-oeuf est très grande par rapport aux autres cellules du même individu. Cela vient de la taille de l’ovule. Les scientifiques pensent que cela permet de se dispenser de la phase de croissance cellulaire avant la mitose. Les cellules embryonnaires se multiplient sans phase de croissance de sorte qu’elles sont de plus en plus petites. En fait cela dure jusqu’à ce que les cellules embryonnaires aient une taille plus habituelle pour des cellules. Ensuite, la phase de croissance apparaît. Léo, ai-je répondu à ta question ? »

Léo : « Oui monsieur Max. Merci monsieur Max. »

Max : « Alors allez vous défouler en récréation. Vous avez encore bien travaillé. Au-revoir mes petits. »

Samuel et Léo : « Au-revoir monsieur Max. »

Séance suivante