Blog

La taille des microbes

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max. »

Max : « Bonjour 🙂 Qui veut faire le petit rappel ? »

Léo : « Nous n’avons pas beaucoup avancé encore. Nous avons vu que les microbes sont des êtres vivants invisibles à l’œil nu. »

Samuel : « Il y a des bactéries, des virus, des protozoaires, des champignons microscopiques et les micro-acariens. »

Léo : « Dans chacun de ces groupes, il y en a qui rendent malade. On dit qu’ils sont pathogènes. Toutefois la plupart n’ont aucun effet. Qu’ils soient là ou pas ça ne change rien. Il existe des microbes bénéfiques comme les bactéries et les moisissures qui permettent de faire les fromages ou le pain et puis il y en même qui sont indispensables. C’est le cas par exemple des bactéries du microbiote intestinal humain sans lequel on ne va pas bien. »

Max : « 1012 à 1014 bactéries appartenant à environ 120 espèces… Il y a également des virus dont des bactériophages qui se développent au détriment de nos chères bactéries. C’est un véritable écosystème 🙂 Aujourd’hui nous allons nous intéresser à la taille des microbes. Savez-vous effectuer un calcul ? »

Léo : « Normalement oui. Mais ça va dépendre du calcul. »

Max : « Rien de difficile. Vous allez calculer les tailles réelles de microbes en utilisant une barre d’échelle. Petit exemple de proportionnalité. J’espère que vous vous souvenez des sous multiples du mètre et que vous savez les convertir. Pour plus de facilité nous utiliserons les puissances de dix. »

Samuel : « Ça devrait aller 🙂 « 

Max : « Je vous fais le premier calcul comme exemple. »

Demodex sp., micro-acrarien de la poussière

Max : « Comme vous le voyez, la barre d’échelle représente 30 μm = 0,000 030 m = 30.10-6 m. Sur mon écran, cette barre d’échelle mesure 4,5 cm = 0,045 m = 4,5.10-2m. Vous suivez ? »

Léo : « Oui monsieur Max. »

Max : « Sur mon écran, l’animal mesure environ 12 cm = 0,12m = 12.10-2m. »

Max : « J’ai fait avec les puissances de dix et avec les nombres décimaux. Maintenant je fais le produit en croix. »

x = (30.10-6 x 12.10-2)/4,5.10-2 = 80.10-6 m.

Ce charmant petit animal mesure environ 80.10-6 m ou 80 μm. Voilà 🙂 « 

Léo : « Ce n’est pas trop difficile. »

Max : « Alors tu vas faire l’exemple suivant Léo. »

Photographie d’une paramécie observée au microscope. Les paramécies sont des animaux unicellulaires qui vivent à la surface des eaux calmes, stagnantes.

Léo : « A l’écran, la barre d’échelle mesure 7 mm = 0,007 m = 7.10-3 m. Elle représente 10 μm = 0,000 010 m = 10.10-6 m. A l’écran, la paramécie mesure 14 cm = 0,14 m = 14.10-2 m. Je fais le tableau de proportionnalité. »

Léo : « Maintenant je fais le produit en croix. x = (14.10-2 x 10.10-6) / 7.10-3 = 200.10-6m. La paramécie mesure donc 200.10-6m soir 200 μm. »

Max : « C’est bien Léo. Samuel, tu vas faire le troisième exemple. Voici l’image que tu vas utiliser. »

Photographie de virus H1N1. Ce virus est à l’origine d’une forme particulière de la grippe.

Samuel : « Oulala ! Il est tout petit ce virus ! La barre d’échelle représente 100 nm c’est-à-dire 100.10-9m. A l’écran, elle mesure 7 mm = 0,007 m = 7.10-3m. Le diamètre d’un de ces virus est de 5 mm à l’écran soit 5.10-3 m. Il faut faire le tableau de proportionnalité maintenant. »

Samuel : « J’en arrive au produit en croix. x= (5.10-3 x 100.10-9)/7.10-3 = 74,42.10-9m. Ce virus est vraiment tout petit puisqu’il ne mesure que 70 nm environ. »

Max : « Apparemment vous savez effectuer un calcul. Je vous donne deux autres images. Vous pourrez vous amuser à calculer la taille réelle de chacun des microbes qu’elles représentent. Pour le moment, vous pouvez filer en récréation. »

Samuel et Léo : « Merci monsieur Max. Au revoir monsieur Max ! »

Photographie d’une amas de bactéries Escherichia coli observées au microscope optique.
Photographie d’un bactériophage T4 observé au microscope électronique.

Séance suivante

Un autre petit calcul

Max : « Nous continuons avec les calculs et l’utilisation d’une barre d’échelle. Cette fois nous cherchons la taille réelle d’un spermatozoïde. Voici le document. »

Léo : « Facile ! Il faut mesurer la barre d’échelle et le spermatozoïde au tableau. »

Samuel : « J’y vais. Alors… La barre d’échelle mesure… 8 cm. Elle représente 0,003 mm. C’est plus simple de le mettre en micromètres. »

Samuel : « Ça fait donc 3 μm ».

Léo : « Le spermatozoïde… Pas facile à mesurer lui…. J’obtiens… 140 cm. »

Samuel : « Je fais le tableau de proportionnalité ! »

Samuel : « Alors le produit en croix maintenant…

x = (140 x 3) / 8 = 52,5 μm. »

Samuel : « Je peux maintenant dire que le spermatozoïde a une longueur d’environ 52 μm. »

Max : « Bravo Samuel. Nous connaissons maintenant les tailles d’un ovule humain et d’un spermatozoïde humain. Nous pouvons compléter la fiche d’activité et faire la leçon. »

Séance suivante

Un petit calcul

Bonjour à tous !

Aujourd’hui je vais vous montrer comment on trouve la taille réelle d’un objet à partir d’une barre d’échelle. C’est un petit calcul qui fait appel à des notions de mathématiques que vous devez maîtriser (conversions et proportionnalité).

Voici le document qui va nous servir de point de départ.

Le but de l’exercice est de trouver le diamètre réel de cet ovule. Comme c’est observé au microscope l’ovule est agrandi sur cette photographie. La taille réelle est forcément très petite.

Pour les calculs je vais prendre les valeurs que j’ai mesurées au tableau en vidéo-projetant la photographie.

Au tableau, la barre d’échelle mesure 12 cm. Cette barre d’échelle représente 50 µm.

Au tableau, le diamètre mesuré est de 50 cm. La valeur réelle est inconnue. Je l’appelle donc X.

J’effectue le produit en croix.

X = (50 cm x 50 μm) / 12 cm

X = 208,333 μm

Le diamètre réel de cet ovule est donc d’environ 210 µm.

Voilà 🙂 Rien de difficile là-dedans mais il faut être rigoureux et noter toutes les étapes du calcul pour ne pas faire d’erreurs. Jetez un œil à vos fiches de mathématiques. Ça peut vous aider.

Séance suivante

Bilan de la géologie interne (temp)

LES VOLCANS

Une éruption volcanique correspond à l’émission de produits volcaniques (lave, cendres et gaz) à partir d’un centre éruptif. Les volcans effusifs émettent de grande quantités de lave fluide sous forme de fontaines et de coulées. Les volcans explosifs émettent de grandes quantités de gaz et de cendres sous la forme de panaches éruptifs et de nuées ardentes.

En profondeur il arrive que les roches fondent. Un magma se forme Comme il est moins lourd que les roches qui l’entourent il remonte. En chemin, il perd ses gaz qui entraînent la lave vers le haut. Quand elle arrive à la surface, il y a éruption.

Les volcans ne sont pas répartis au hasard à la surface de la Terre. On les trouve dans des zones particulières :

– les rifts ;

– les dorsales ;

– les cordillères bordant les fosses océaniques ;

– des points isolés.

Les faits à expliquer :

– la formation du magma ;

– la répartition des volcans.

LES SÉISMES

Les séismes se manifestent par des ondes sismiques pouvant être destructrices.

Les ondes sismiques apparaissent lorsqu’une faille apparaît ou rejoue. En profondeur des contraintes s’exercent sur les roches. Lorsque ces contraintes sont croissantes elles finissent par casser les roches en deux blocs qui se déplacent l’un par rapport à l’autre. Une faille apparaît et des ondes sont émises. Elles se propagent dans toutes les directions de l’espace et lorsqu’elles atteignent la surface le sol tremble et il y a un tremblement de Terre.

Les séismes ne sont pas répartis au hasard à la surface de la Terre. Ils sont associés à des reliefs particuliers :

– les rifts ;

– les dorsales océaniques ;

– les fosses océaniques ;

– les chaînes de montagnes.

Les faits à expliquer :

– l’origine des contraintes ;

– la répartition des séismes.

L’étude des ondes sismiques nous renseigne sur la structure interne de la Terre.

LA STRUCTURE DE LA TERRE

La Terre est constituée d’enveloppes concentriques. De l’extérieur vers l’intérieur il y a :

– la croûte terrestre plus épaisse pour les continents que pour les océans.

– le manteau lithosphérique ;

– l’asthénosphère ;

– le manteau ;

– le noyau externe liquide ;

– le noyau interne solide.

Coupe schématique de la Terre (source : AVG)

La croûte et le manteau lithosphérique constitue la lithosphère. Elle repose sur l’asthénosphère.

LES PLAQUES TECTONIQUES

La surface de la Terre est découpée en une douzaine de plaques dont l’épaisseur correspond à la lithosphère. Les limites des plaques sont les zones géologiquement actives où l’on trouve les volcans et les séismes.

Les plaques sont en mouvement les unes par rapport aux autres. Elles peuvent :

– s’écarter (divergence) au niveau des dorsales océaniques ;

– se rapprocher (convergence) au niveau des fosses océaniques et des chaînes de montagnes ;

– coulisser au niveau de grandes failles transformantes.

LA TECTONIQUE DES PLAQUES

La tectonique des plaques est une théorie qui explique les faits observés en géologie interne (volcans et séismes).

Le moteur de la tectonique des plaques est l’énergie interne de la Terre. Cette énergie vient essentiellement de la couche D’’.

Coupe schématique de la Terre montrant les mouvements de convection dans le manteau à l’origine des mouvements des plaques lithosphériques.

Le manteau est chauffé par en dessous. Il remonte en repoussant les couches au-dessus de lui. Il se produit un bombement de l’asthénosphère et de la lithosphère qui se fracture. Il y a de petits séismes.

La remontée du manteau continue. Il s’écoule sur les côtés en entraînant la lithosphère. Un rift apparaît. La pression sur le manteau diminue et il y a fusion partielle de la partie supérieure du manteau. Du magma se forme ce qui explique l’apparition de volcans effusifs dans le rift.

Si la remontée du manteau se poursuit, les deux bords du rift se séparent et une lithosphère océanique faite de roche volcanique apparaît. Elle est coupée en deux par une dorsale. C’est le stade océan étroit comme la Mer Rouge. Si cela continue l’océan s’élargit tout en restant symétrique. C’est la cas de l’océan atlantique.

A la jonction entre la lithosphère océanique et la lithosphère continentale les lithosphères peuvent se détacher. La lithosphère océanique, plus dense que l’asthénosphère s’enfonce. Comme elle est poussée par l’ouverture de l’océan elle plonge sous la lithosphère continentale dans une zone de subduction. La plongée de la lithosphère océanique se fait par à-coups qui s’accompagnent de séismes. En s’enfonçant, la lithosphère se réchauffe et fond en partie. Un magma se forme. Il est à l’origine des volcans explosifs.

Une dorsale océanique est une zone de création de lithosphère océanique. Une zone de subduction est une zone de destruction de lithosphère océanique.

Théorie : une théorie est un ensemble de règles et de lois scientifiques qui cherchent à décrire et à expliquer un ensemble de faits.

Les espèces

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Aujourd’hui nous allons étudier les espèces. Savez-vous ce qu’est une espèce ? »

Léo : « Une espèce ? C’est un groupe d’animaux qui sont pareils alors on peut les reconnaître ! »

Samuel : « Excuse-moi Léo mais il doit y avoir des espèces de végétaux aussi. »

Léo : « Ah oui ! Et aussi des espèces de champignons ! »

Samuel : « Alors on doit dire que c’est un groupe d’êtres vivants qui sont pareils. »

Léo : « Et quand ils font des petits, les petits sont pareils aussi. »

Samuel : « Il faudrait rajouter ça dans notre définition. Je ne sais pas comment le dire… »

Léo : « Mmmm… Une espèce est un groupe d’individus qui se ressemblent et qui peuvent faire des petits. Qu’en pensez-vous monsieur Max ? »

Max : « C’est bien réfléchi. Mais votre définition n’est pas suffisante. Il faut préciser que les petits pourront eux-mêmes avoir des petits. Et ce serait mal formulé car on ne parle pas de petits pour les végétaux ou les champignons. Je remplacerait donc par ‘descendance’ en précisant qu’elle doit être féconde. »

Samuel : « Oulala ! Ça en fait du vocabulaire ça ! »

Max : « Vous savez ce que je pense du vocabulaire. C’est une richesse. Et vous êtes tout à fait capables de vous approprier quelques mots. Notons le cours. Je vous donnerai un exemple d’exercice. »

Cheval

Âne
Mulet et bardot

Chez le cheval, un mâle (étalon) et une femelle (jument) peuvent faire des petits. Ces petits pourront à leur tour se reproduire. Il en est de même chez l’âne. Par contre si un étalon s’accouple avec une ânesse, le bardot qui vient au monde sera stérile. De la même façon si un âne se reproduit avec une jument, le mulet qui vient au monde sera stérile.

Le cheval et l’âne se ressemblent. Ils peuvent se reproduire mais leur descendance est stérile. Ils n’appartiennent donc pas à la même espèce.

Max : « Avez-vous compris ? »

Samuel et Léo : « Oui monsieur Max. »

Max : « Nous allons quand même faire quelques exercices pour que vous vous appropriiez la méthode de rédaction. On se retrouve dans l’article suivant mais vous pouvez déjà trouver les exercices en cliquant ci-dessous 🙂 « 

Espèces-Exercices

Séance suivante

La divergence des plaques

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. « 

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Qui  fait le petit rappel ? »

Samuel et Léo : « Moi ! Moi ! »

Max : « Encore une fois le choix est difficile. Commençons avec toi Samuel. »

Samuel : « Merci monsieur Max. Pour le moment nous savons que la surface de la Terre est découpée en une douzaine de plaques qui se déplacent les unes par rapport aux autres. L’activité géologique (volcans et séismes) se concentre aux limites de ces plaques. Les mouvements peuvent être des divergences, des convergences ou des coulissements. »

Léo : « Les divergences c’est quand les plaques s’écartent. Il y a les rifts et les dorsales océaniques. La convergence c’est quand les plaques se rapprochent comme au niveau des fosses océaniques et des chaînes de montagnes. Les coulissement c’est quand une plaque glisse contre une autre. »

Samuel : « Les plaques sont très grandes mais elles ne sont pas très épaisses. Si j’ai bien compris leur épaisseur correspond à celle de la lithosphère. La lithosphère c’est la couche la plus extérieure de la Terre. Elle est dure et cassante. Son épaisseur est d’une centaine de kilomètres mais vous avez dit que par endroits son épaisseur est nulle. Je ne comprends pas bien. »

Max : « Je vais vous expliquer cela. Pouvez-vous détailler la lithosphère ? »

Léo : « Elle comporte la croûte et le manteau lithosphérique. La limite inférieure de la croûte est le Moho et la limite inférieure de la lithosphère est la LVZ. L’asthénosphère est un tout petit peu moins dure que la lithosphère. Vers 700 km de profondeur on arrive au manteau inférieur. »

Max : « C’est très bien tout ça 🙂 Vous connaissez bien vos leçons. Nous allons pouvoir étudier tout cela. Commençons par les rifts puisque vous n’avez pas bien compris. Actuellement, il y a un grand rift à l’est de l’Afrique. Voyons cela. »

Carte de localisation du rift Est-Africain. C’est une zone de divergence. On y observe des séismes superficiels et des volcans effusifs.

Léo : « Ça fait comme des gradins ou des marches d’escalier de chaque côté d’une plaine. »

Max : « C’est tout à fait ça Léo. La plaine est un fossé d’effondrement. On parle de graben. Voilà ce que cela donne en coupe. »

Coupe schématique d’un rift.

Samuel : « Comment ça se forme ça ? »

Max : « Bonne question. Et si nous modélisions ? J’ai une petite vidéo quelque part… »

Max : « C’est ce qu’il se passe dans la croûte terrestre. »

Léo : « Monsieur Max, si j’ai bien compris… Autrefois l’Amérique du sud et l’Afrique était collés puis ces deux continents se sont séparés. Il y a eu un rift entre les deux ? »

Max : « Tu as bien compris Léo. »

Samuel : « Donc après le rift il y a l’océan ! »

Max : « Oui 🙂 Mais avant de voir les dorsales continuons avec les rifts. Je voulais vous montrer une image mais je ne la trouve pas. Le profil sismique d’un rift… »

Léo : « C’est une image de la profondeur obtenue grâce aux ondes sismiques ? »

Max : « Oui. C’est un peu compliqué mais j’aurais vraiment aimé vous montrer ça. Tant pis. Voici un schéma que l’on peut obtenir à partir de ce genre de document. »

Coupe schématique au niveau d’un rift.

Samuel : « Alors… La lithosphère s’est aminci et la lithosphère est remontée. On voit aussi qu’il y a un réservoir magmatique juste sous le rift. »

Léo : « Ça explique les volcans effusifs. »

Max : « Bravo mes petits. »

Léo : « Nous avons décrit mais ça n’explique pas ce qu’il se passe. »

Samuel : « J’ai une hypothèse ! »

Max : « Je t’écoute Samuel. »

Samuel : « Quand nous avons étudié la coupe de la Terre vous nous avez parlé de la couche D » juste à la limite entre le noyau externe et le manteau. Je me souviens que vous aviez dit que c’est une source de chaleur. Ça chauffe le manteau par en dessous. Quand on chauffe un solide, sa densité diminue et il remonte. Je suppose que c’est ce qu’il se passe avec le manteau. Il remonterait et en arrivant sous la lithosphère il fondrait. »

Léo : « Oui oui oui ! Bravo Samuel ! Ça expliquerait aussi que la croûte se bombe et se fracture ! Ensuite, le manteau repousserait l’asthénosphère sur les côtés ce qui entrainerait la lithosphère ! Et hop ça s’écarte ! »

Max : « Alors là bravo ! Je n’ai rien d’autre à dire. Bravo à tous les deux 🙂 J’ai un peu l’air bête avec ma modélisation. Elle est inutile. »

Léo : « Non ! Je veux voir ! »

Léo : « Oulala ! La bulle qui remonte c’est le manteau ? »

Max : « Oui mais dans la réalité la remontée se fait en dizaines de millions d’années. »

Samuel : « On voit bien que la remontée du manteau repousse la couche du dessus. »

Léo : « En plus, on voit que la couche du dessus s’enfonce sur les bords. »

Samuel : « Forcément ! Si ça s’écarte quelque part il faut bien que ça s’enfonce ailleurs ! »

Léo : « Monsieur Max, si la divergence continue après l’apparition du rift, il doit y avoir de plus en plus de volcans. Ça fait un alignement de volcans effusifs. Ça ressemble à une dorsale ça ! »

Max : « Oui Léo. Les deux bords du rift se sépare et l’espace se comble avec de la roche magmatique. C’est comme cela que se forme la lithosphère océanique. Voici une modélisation. »

Léo : « Je comprends. Quand les continents se sont séparés, l’espace entre le deux se comble de roche volcanique. C’est comme cela que se forme la croûte océanique. »

Samuel : « Et donc après le rift, il y a bien un océan ! »

Max : « Oui mes petits 🙂 Il est d’abord étroit comme c’est le cas pour la mer rouge. »

Carte de la Mer Rouge (source : Wikipédia)

Léo : « Pourquoi dit-on la Mer Rouge si c’est un océan ? »

Max : « Cela ne fait pas longtemps qu’on connaît la nature d’un océan. Un océan a une croûte océanique faite de roche volcanique et il possède ou il a possédé une dorsale. Une mer c’est sur un continent. Je continue. Après, l’océan ne fait que s’élargir. Il ne se passe rien de plus. On peut dater l’âge des fonds océaniques. Voici ce que cela donne pour l’océan Atlantique. »

Max : « Voilà ! Vous savez tout ! Vous pouvez reconstituer ce qu’il s’est passé pour que l’Afrique et l’Amérique du sud trouvent leur place actuelle 🙂 Avant d’aller vous laisser vous aérer en récréation regardons une petite animation. »

Max : « Cette fois vous savez tout ! »

Léo : « Merci monsieur Max ! »

Samuel : « C’était très intéressant 🙂 « 

Max : « Je vous mets un petit cours que vous recopierez pour la prochaine fois et en lien, un document qui résume un peu tout ce que nous avons vu aujourd’hui. Travaillez bien ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

III. LA DIVERGENCE DES PLAQUES.

La divergence commence au sein d’un continent. Le manteau, chauffé par en dessous remonte. Il s’accumule puis s’écoule sur les côtés. L’asthénosphère s’écarte en entraînant la lithosphère. Un rift apparaît. Le manteau fond et donne un magma fluide à l’origine de volcans effusifs. A chaque mouvement un séisme superficiel se produit.

Si la divergence continue une dorsale apparaît et sépare deux plaques lithosphérique. De la lithosphère océanique se met en place. C’est le stade océan étroit illustré actuellement par la Mer Rouge. Puis l’océan s’élargit et on arrive au stade océan Atlantique.

Doc divergence

Séance suivante

Une drôle d’expérience

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour monsieur Max ! »

Max : « Bonjour, bonjour 🙂 Pas de petit rappel aujourd’hui. Je vais vous donner un petit exercice pour vérifier que vous avez bien compris ce que nous avons vu depuis le début de l’année. »

Léo : « J’aime bien les exercices pour voir si on a compris 🙂 »

Max : « Suivez bien le protocole que je vais vous proposer. Prenez le spermatozoïde d’un individu A et l’ovule d’un individu B et faisons une fécondation in vitro. Nous obtenons une cellule-œuf 1. Enlevons le noyau de cette cellule-œuf. Il reste la membrane et le cytoplasme de cette cellule-œuf 1. C’est ce qu’on appelle une cellule énucléée c’est-à-dire dont on a enlevé le noyau. D’un autre côté nous prenons une cellule quelconque d’un individu C et nous transférons son noyau dans la cellule-œuf énucléée. Nous obtenons une cellule-œuf mixte. Elle possède la membrane et le cytoplasme de l’ovule et le noyau de la cellule de l’individu C. Maintenant nous implantons cette cellule-œuf mixte dans l’utérus d’une femme D. Avez-vous suivi ? »

Samuel : « Un schéma m’aiderait bien pour être sûr… »

Max : « Le voici. »

Protocole expérimental d’une drôle d’expérience de transfert de noyau.

Samuel : « C’est mieux 🙂 »

Max : « Sans justifier votre réponse pouvez-vous me dire à qui va ressembler le bébé ? »

Léo : « A l’individu C ! »

Samuel : « Je suis d’accord. »

Max : « C’est ça 🙂 Maintenant vous allez sortir une feuille, inscrire votre prénom et répondre à cette simple consigne : En utilisant un vocabulaire adapté, expliquez l’origine des ressemblances et des différences entre l’individu C et le bébé obtenu suite à cette expérience de transfert de noyau. Vous avez vingt minutes. Il est possible de répondre en quatre ou cinq phrases seulement. Si vous maîtrisez le vocabulaire. « 

Vingt minutes plus tard…

Max : « Je ramasse ! »

Léo : « J’espère que j’ai bon. »

Samuel : « Je crois que j’ai tout dit… »

Max : « Ça m’a l’air très bien tout ça. Je vais faire la correction moi-même. Suite à la fécondation, nous obtenons une cellule-œuf. Son information génétique disparaît lorsqu’on enlève son noyau. Suite au transfert du noyau de la cellule de l’individu C nous avons transféré son information génétique puisque l’information génétique est localisée dans le noyau. La cellule-œuf mixte contient donc l’information génétique de l’individu C et nous savons que cette information code pour les caractères héréditaires. L’individu C et le bébé auront donc les mêmes caractères héréditaires. Mais ils n’auront pas le même âge. Ils seront donc différents. De plus, ils se développent et vivent dans des environnements différents. Leurs caractères acquis seront donc différents. »

Léo : « Monsieur Max, vous avez dit qu’il était possible de répondre en qutre ou cinq phrases et vous en avez fait plus ! »

Max : « Je le sais Léo. Ce n’est pas encore ma réponse. C’est ma réflexion. Voici ma réponse. Les deux individus auront les mêmes caractères héréditaires car ils ont la même information génétique. Ils seront différents car ils ont des environnements différents et donc des caractères acquis différents. De plus, ils n’ont pas le même âge.« 

Samuel : « Trois phrases ! Hoplà ! »

Léo : « C’est pour cela qu’il faut maîtriser le vocabulaire. On peut dire des tas de choses en peu de phrases. »

Max : « Oui Léo. Bien, vous pouvez ranger vos affaires. Je vous rendrai vos travaux la prochaine fois. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Avant de vous quitter je voudrais vous expliquer comment j’évalue ce travail. Voici la compétence évaluée :

Ici, les connaissances sont peu nombreuses. Il faut faire le lien entre le transfert du noyau et celui de l’information génétique qui code pour les caractères héréditaires. Il faut également parler de l’influence de l’environnement sur les caractères acquis. Les différences dues à l’âge sont un peu un bonus.

Expérience de pensée Sujet

Séance suivante

Réaliser une carte du monde

Bonjour à tous ! En géologie, nous avons parfois besoin de connaissances en géographie. Je vous propose un petit exercice qui va vous permettre de réviser un peu quelques données fondamentales de géographie physiques. Pour cela vous aller réaliser une carte du monde. Voici le fond de carte.

1. En noir, placer les continents ou régions suivants : Amérique du sud ; Amérique du nord ; Groenland ; Europe ; Asie ; Afrique ; Indonésie ; Australie ; Antarctique.

2. En bleu, placer les noms des océans : océan atlantique, océan pacifique, océan indien ; océan arctique ; océan antarctique

3. Représenter en marron, les chaînes de montagnes suivantes (vous pouvez faire plus foncées les montagnes les plus hautes) : Appalaches, Montagnes rocheuses, Cordillère des Andes, Alpes, Atlas, Caucase, Himalaya. N’oubliez d’écrire les noms de ces chaînes de montagnes.

4. Indiquez par des petits triangles les plus hauts sommets de chaque continents. Ce sont : Kilimandjaro, Mont McKinley, Aconcagua, Mont Vinson, Mont Everest, Mont-Blanc.

5. Représentez en bleu les fosses océaniques. Vous pouvez vous aider de ce document.

Carte de localisation des fosses océaniques autour de l’océan pacifique.

6. Représenter en rouge les dorsales océaniques. Là aussi je vous aide un peu 🙂

Carte de localisation des dorsales océaniques.

7. N’oubliez de nommer les lignes continues et pointillées qui figurent sur le fond de carte. Ce sont des lignes imaginaires importantes (équateur, tropiques et cercles polaires).

N’OUBLIEZ PAS DE FAIRE LA LÉGENDE EN BAS DE LA CARTE !!!

Vous pouvez colorier si vous le voulez mais si vous le faites, faites le proprement. Travaillez bien ! J’aimerais pouvoir mettre vos travaux dans mon site 🙂

Cette jolie carte peut vous aider un peu.

Si vous aimez la géographie vous pourrez vous amuser ici : jeux de géographie.

Séance suivante

Les ondes sismiques (leçon)

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max. »

Max : « Bonjour mes petits. Lors de la dernière séance j’ai répondu à une interrogation de Samuel au sujet des vibrations qui sont la manifestations des tremblements de terre. Je vous ai donc parlé des ondes sismiques. Avez-vous fait le résumé que je vous avais demandé ? »

Samuel : « Bien sûr monsieur Max ! »

Léo : « Moi aussi ! »

Max : « Votre travail est toujours fait et il est toujours de qualité. Voyons cela… »

Max : « C’est très bien tout ça. Bravo mes petits 🙂 Je vais reprendre ce que vous avez écrit pour la leçon. Prenez vos cahiers et notez. »

II. LES ONDES SISMIQUES.

Une onde est un déplacement d’énergie sans déplacement de matière. Les ondes sismiques sont des vibrations du sol. Il existe trois types d’ondes sismiques qui ne se déplacent pas à la même vitesse. Les ondes sismiques sont émises à partir d’un point appelé foyer du séisme.

Les ondes sismiques se déplacent dans toutes les directions de l’espace. Elles s’atténuent en fonction du temps et de la distance au foyer.

Le foyer d’un séisme est le point d’origine d’un séisme.

Max : « Avez-vous des questions ? »

Samuel : « Puis-je résumer ce que nous avons vu monsieur Max ? »

Max : « Bien sûr Samuel. C’est un bon moyen de savoir si tu as compris. »

Samuel : « Il faut remettre dans l’ordre chronologique. Tout commence au foyer du séisme. Je ne sais pas ce qu’il s’y passe mais d’un seul coup, il émet des ondes sismiques. Ces ondes se déplacent dans toutes les directions de l’espace mais elles s’atténuent en fonction du temps et de la distance au foyer. Quand elles arrivent à la surface de la Terre, elles font vibrer le sol et si elles sont encore assez fortes elles ont des conséquences comme les dégâts aux constructions humaines, des sans abris, des blessés et des morts, des modifications du paysages et parfois des tsunamis. »

Max : « C’est ça Samuel. Tu as bien compris. »

Léo : « Il reste des problèmes à résoudre quand même ! Dans tous les modèles d’ondes que vous nous avez montré il y a quelque chose qui donne de l’énergie au départ de l’onde. Et puis on ne sait toujours pas quel lien il y a entre les failles et les séismes. »

Max : « Bonnes remarques Léo 🙂 Nous allons commencer par étudier les failles. Mais nous le ferons la prochaine fois. »

Léo : « C’est déjà la récré ? »

Max : « Oui. Filez mes petits. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir ! »

Séance suivante

Les ondes sismiques

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Nous commençons par le petit rappel. Tiens, si je le faisais sous la forme d’une interrogation orale ? Au hasard… Léo ! »

Léo : « Oui monsieur Max. »

Max : « As-tu appris ta leçon ? »

Léo : « Bien sûr monsieur Max ! »

Max : « Vérifions cela. Quelles sont les manifestations des séismes ? »

Léo : « Lors d’un tremblement de terre la terre tremble. Les vibrations durent de quelques secondes à quelques minutes et elles touchent une région plus ou moins étendue. »

Max : « Très bien. Quelles peuvent être les conséquences d’un séisme ? »

Léo : « Les conséquences d’un séismes peuvent être des dégâts aux constructions humaines, des sans-abris voire des blessés et des morts, des modifications du paysage et parfois des tsunamis. Il peut aussi y avoir des failles même si je ne sais pas encore ce que c’est. »

Max : « C’est très bien Léo. 20/20 ! Tu peux retourner à ta place. Nous allons commencer. »

Samuel : « Monsieur Max, puis-je poser une question ? »

Max : « Bien sûr Samuel. Répondre aux questions de mes élèves est ce que je préfère dans mon métier d’enseignant. »

Samuel : « Merci monsieur Max. Ce n’est pas vraiment une question. Dans la leçon, nous avons écrit que la terre tremble. Il y a des vibrations. Je vous ai entendu parler d’ondes sismiques. Je ne comprends pas bien ce que c’est une onde. »

Max : « Oui… Une onde… Je vais essayer de vous expliquer cela simplement. J’avais prévu de voir cela rapidement mais je m’adapte. »

Samuel : « Merci monsieur Max. »

Max : « Vous connaissez déjà les ondes mais vous ne le savez pas. Prenons un exemple simple. »

Léo : « C’est une onde ? J’aurais dit une vague moi. »

Max : « Une vague est une onde. »

Samuel : « La surface de l’eau monte et descend puis monte et descend… »

Léo : « Oui mais ça s’arrête au bout d’un moment. »

Max : « Première caractéristique d’une onde : elle s’atténue avec le temps. »

Samuel : « Elle s’atténue ? Qu’est ce que ça veut dire ? »

Max : « Disons qu’elle diminue. Autre exemple. »

Léo : « Oui, on voit bien l’onde. »

Samuel : « Elle rebondit un peu sur le bord… »

Max : « Oui Samuel. Notez le bien. Cela nous sera utile plus tard. Vous voyez bien que cette onde s’atténue en fonction du temps. »

Samuel : « Il me semble qu’elle s’atténue également en fonction de la distance parcourue. Plus on s’éloigne du point où elle a été créée, plus elle est faible. »

Max : « C’est exact Samuel. Commencez-vous à comprendre ? »

Samuel : « Oui monsieur Max. Une onde c’est un peu comme un déplacement vers le haut et le bas qui se déplace dans toutes les directions. »

Max : « C’est très bien Samuel mais il faut essayer de comprendre ce qui se déplace. Regardez ce petit film anodin. »

Léo : « On voit bien que les ondes s’atténuent en fonction de la distance au point d’impact. »

Max : « C’est vrai mais observez bien le bouchon. »

Samuel : « Il ne bouge pas ! »

Léo : « En fait si ! Mais il avance puis revient à sa place ! »

Samuel : « Donc lui ne se déplace pas. L’onde se déplace mais pas le bouchon. J’en déduis que l’eau non plus. »

Max : « Bonne déduction Samuel 🙂 Effectivement, une onde est un déplacement d’énergie sans déplacement de matière. C’est un peu compliqué mais je pense que vous pouvez comprendre. »

Léo : « Si nous revenons aux séismes cela veut dire que la terre tremble comme la surface de l’eau. Ce sont les ondes sismiques. Elles aussi s’atténuent avec la distance et le temps monsieur Max ? »

Max : « Oui Léo. Cela explique que le séisme n’est pas ressenti partout sur Terre. Mais il peut être enregistré quand même avec des appareils très précis. »

Samuel : « A chaque tremblement de terre toute la Terre tremble alors ? »

Max : « Oui mais il n’y a que dans une région plus ou moins étendue où les vibrations sont ressenties. »

Léo : « Je comprends mieux les dégâts ! Si le collège bouge de bas en haut puis de haut en bas pendant plusieurs secondes il finit tout cassé ! »

Max : « Ces ondes dites transversales ne sont pas les plus dangereuses. »

Léo : « Il y a différents types d’ondes ? »

Max : « Oui. Illustrons cela avec un ressort. Dans la vidéo qui suit il n’y a que deux types d’ondes qui sont illustrés. Je vous montrerais le troisième type ensuite. »

Max : « Je pense que ce petit film est suffisamment clair. Je vous montre des animations des trois types d’ondes sismiques. »

Max : « Ces ondes ne se déplacent pas à la même vitesse. Les plus rapides sont les ondes P. Le P signifie ‘premières’ parce que ce sont les premières à arriver. Les ondes S arrivent en second. Puis il y a les ondes L appelées ondes de Love ou Rayleigh. Ce sont les plus dangereuses pour les bâtiments. »

Léo : « Ben oui ! En plus elles arrivent après les autres qui ont déjà fragilisé les constructions. »

Max : « Je répète que ces différents types d’ondes ne se déplacent pas à la même vitesse. Plus on se trouve loin du point de départ du séisme, plus l’écart entre les arrivées des ondes sera important. Voici ce que donne un enregistrement d’ondes sismiques par un sismographe. »

Sismogramme montrant les enregistrements des trois types d’ondes sismiques.

Léo : « Mais il y a trois tremblements de terre alors ! »

Max : « Non Léo. Un tel enregistrement a été réalisé loin du point de départ des ondes. Le tremblement de terre n’a donc pas été ressenti là où se trouve le sismographe. »

Samuel : « Monsieur Max. Comment appelle t-on le point d’origine des ondes sismiques ? »

Max : « C’est le foyer Samuel. Le foyer est le point d’origine du séisme. »

Samuel : « Alors si j’ai bien tout compris, le séisme commence au foyer qui envoie des ondes sismiques dans toutes les directions de l’espace. Ces ondes s’atténuent en fonction du temps et de la distance au foyer et quand elles arrivent à la surface elles provoquent le tremblement de terre. »

Max : « C’est ça 🙂 Mes petits, je suis désolé de vous dire que cette séance est terminée. Pour la prochaine fois vous allez me faire un petit résumé de cet article. Pour cela vous noterez sur une feuille ce qui vous semble le plus important dans cet article. Cela ne doit pas dépasser 10 lignes. »

Samuel : « D’accord monsieur Max ! »

Max : « Filez vous dégourdir les pattes ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante