Blog

La respiration des végétaux

Max : « Bonjour à tous, enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Il me semble que c’est Léo qui a fait le dernier petit résumé. Samuel, c’est donc à ton tour. Mais tu peux faire simple si tu veux. « 

Samuel :  » Simple ? D’accord 🙂 La respiration est l’action de prélever du dioxygène dans l’environnement et d’y rejeter du dioxyde de carbone. La respiration peut s’étudier grâce à un oxymètre et de l’eau de chaux. »

Max : « Très bien Samuel. Léo, la suite s’il te plaît. »

Samuel : « Les animaux qui respirent dans l’air ont soit des poumons, soit des trachées alors que les animaux qui respirent dans l’eau ont des branchies. Parfois ils réalisent leurs échanges gazeux au travers de leur peau. Et puis il y a des animaux qui ont des comportements respiratoires particuliers, comme l’argyronète. »

Max : « Très bien ! Bravo ! »

Samuel : « Monsieur Max ! J’ai une question ! »

Max : « Je t’écoute Samuel. »

Samuel : « Monsieur Max, quels sont les organes respiratoires des végétaux ? »

Max : « Très bonne question Samuel. C’est précisément ce que nous allons étudier aujourd’hui. Tiens, je vais vous donner une photographie d’une observation au microscope d’épiderme de feuille. Je ne sais pas encore laquelle. Puis vous en ferez un dessin. »

Léo : « On ne réalise pas la préparation microscopique nous mêmes monsieur Max ? »

Max : « Nous pourrions. Mais pas cette fois. Où sont donc passés mes documents… Les voilà ! Tenez ! J’espère que vous vous souvenez des consignes pour réaliser un dessin et sa légende. »

Samuel : « Moi je m’en souviens ! »

Léo : « Moi aussi ! »

Max : « C’est ce que nous allons voir 🙂 Au travail ! »

Max : « Ah ! J’ai failli oublié. Le grossissement est de 400 fois et vous pouvez légender avec ce que nous avons vu l’an dernier. Ce sont des cellules. Elles ont donc une membrane, un cytoplasme et un noyau. »

Léo : « Merci monsieur Max. »

Un peu plus tard…

Samuel et Léo : « Fini ! »

Max : « Montrez moi ça… C’est très bien ça Léo. Samuel, ton dessin est très beau lui aussi. Je les publierai plus tard. « 

Samuel : « Monsieur Max, l’an dernier nous avons vu l’épiderme d’oignon. Il y avait des cellules allongées comme celles que nous avons dessinées. Mais il n’y avait pas les drôles de machins. C’est quoi ? »

Max : « Bonne question 🙂 Ce sont des stomates. Ils sont constitués de deux cellules de garde. Je vous fais un petit dessin au tableau… »

Dessin d’un stomate observé au microscope

Max : « Comme vous pouvez le voir, les stomates sont constitués de deux cellules de garde qui délimitent une ouverture appelée ostiole. Quand les cellules gonflent l’ostiole se ferme. Quand les cellules se dégonflent, l’ostiole s’ouvre. »

Léo : « C’est par là que les gaz respiratoires passent monsieur Max ? »

Max : « Oui Léo. Nous pouvons noter la leçon. »

III. LES STOMATES ET LA RESPIRATION DES VÉGÉTAUX.

L’observation au microscope optique d’épiderme de feuille montre des structures appelées stomates. Les stomates sont constitués de deux cellules de garde qui délimitent un ostiole. Les échanges gazeux entre la plante et l’environnement se font par les stomates.

Max : « Bien. Nous avons terminé la leçon et le chapitre. Si vous n’avez pas de question vous pouvez ranger vos affaires et sortir vous amuser en récréation. »

Samuel et Léo : « Merci monsieur Max. Au revoir monsieur Max ! »

 

Séance suivante

Les organes respiratoires

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Mmmmm… Léo, c’est toi qui vas faire le petit rappel aujourd’hui. »

Léo : »Bien monsieur Max. Nous avons vu que le respiration est un échange de gaz entre un être vivant et son environnement. L’être vivant prélève du dioxygène et rejette du dioxyde de carbone. Les échanges de dioxygène peuvent être mesurés grâce à un oxymètre. C’est un appareil de mesure du dioxygène. Et les échanges de dioxyde de carbone peuvent être mis en évidence par l’eau de chaux qui est un liquide incolore qui blanchit en présence de dioxyde de carbone. »

Max : « Très bien Léo. Samuel, as-tu quelque chose à ajouter. »

Samuel : « On pourrait préciser que dans l’eau, les gaz sont dissous. Et puis nous avons revu deux méthodes : la démarche expérimentale et le commentaire de graphique. »

Max : « Très bien ! Nous pouvons aborder le problème suivant. Vous l’aviez d’ailleurs posé en début d’année… »

Samuel : « Je sais ! On pourrait se demander : Avec quoi les animaux respirent-ils ?« 

Max : « Exact Samuel ! Vous allez étudier cela tout seuls grâce aux documents de votre manuel, aux pages 18 à 21. Je vous demande de compléter le tableau que je vais vous donner, puis vous rédigerez un court texte qui parle des organes respiratoires. »

Samuel et Léo : « Bien monsieur Max. »

Max : « Voici le tableau… »

Léo : « Monsieur Max, les milieux de vie et de respiration sont bien l’air et l’eau ? »

Max : « Oui Léo, un animal vit soit dans l’air soit dans l’eau. Et il respire dans l’air ou dans l’eau. »

Samuel : « Et les réponses sont dans les documents ? »

Max : « Oui Samuel. Au travail maintenant ! »

Max : « Alors ? Ça avance ? »

Samuel : « C’est terminé monsieur Max ! »

Max : « Montrez-moi… Mais c’est très bien tout ça ! Bravo mes petits. Je donne quand même la correction… »

Max : « Passons au petit texte. Léo, peux-tu lire ce que tu as écrit ? »

Léo : « Bien sûr monsieur Max. D’après le tableau nous pouvons voir que les organes qui permettent de respirer dans l’air sont les poumons et les trachées alors que ceux qui permettent de respirer dans l’eau sont les branchies. »

Max : « Très bien Léo. J’ajouterai que la peau permet parfois aux animaux aquatiques de respirer dans l’eau. Samuel, as-tu ajouté quelque chose ? »

Samuel : « Oui. Nous voyons aussi que certains animaux ne respirent pas dans leur milieu de vie. ils doivent alors adopter des comportements respiratoires particuliers. »

Max :  « Bravo Samuel ! Et très bien à toi Léo. J’ai noté l’essentiel au tableau. Prenez vos cahiers. Nous allons noter la leçon. »

Quels sont les organes qui permettent de respirer ?

II. LES ORGANES RESPIRATOIRES DES ANIMAUX.

Les organes qui permettent de respirer dans l’air sont les poumons et les trachées.

Les organes qui permettent de respirer sous l’eau sont les branchies et parfois la peau.

Les animaux qui ne respirent pas dans leur milieu de vie doivent adopter des comportements respiratoires particuliers. Certains remontent à la surface pour respirer (dauphins, limnées…). D’autres plongent avec une réserve d’air (Dytique, argyronète…). Des animaux à branchies peuvent survivre dans l’air en gardant leurs branchies humides.

Max : « Vous avez bien travaillé et il nous reste un peu de temps. Je vais vous montrer une petite vidéo… Soyez sages 🙂 « 

Léo : « Une araignée qui vit sous l’eau ! »

Samuel : « Je savais même pas que ça existait ! »

Léo : « Ben moi non plus. Elle respire dans l’air mais sous l’eau 🙂 « 

Samuel : « C’est rigolo 🙂 « 

Max : « Oui 🙂 Bien, cette fois la leçon est terminée. Vous pouvez ranger vos affaires et filer en récréation. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : »Au revoir mes petits. »

Séance suivante

La phagocytose et la fièvre

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Léo, le petit rappel s’il te plaît. »

Léo : « Oui monsieur Max. Nous avons vu les signes visibles que le corps réagit à une infection. Il y a la réaction inflammatoire. La zone infectée rougit, gonfle, s’échauffe et devient douloureuse. Et parfois il y a du pus. »

Max : « Très bien Léo. Samuel, peux-tu nous rappeler ce qu’est le pus ? »

Samuel : « Oui monsieur Max. Nous avons observé une goutte de pus au microscope alors je sais ce qu’il y a dans le pus. Le pus est constitué de lymphe, de bactéries ou de cellules infectées par des virus, de leucocytes et de cellules mortes. Les leucocytes sont aussi appelés globules blancs et il y en a de nombreux types. »

Max : « Bravo à tous les deux ! Nous pouvons donc aborder la suite. Le problème est simple. Comment font les leucocytes pour tuer les bactéries ou les cellules infectées ? »

Léo : « Oulala ! Mais ça a l’air compliqué ça ! »

Max : « Non, n’ayez pas peur. Je vais vous donner un petit film pour vous aider. Le voici… »

Léo : « Monsieur Max, j’ai une question mais pas vraiment en rapport avec la phagocytose. »

Max : « Je t’écoute Léo. »

Léo : « Monsieur Max, lors de la réaction inflammatoire la température augmente. Je sais aussi que lorsqu’on est malade on a de la fièvre. A quoi sert cette élévation de température ? »

Max : « Bonne question mon petit Léo. Attendez un instant… Voilà ! J’ai là un graphique qui va vous permettre de trouver vous-mêmes la réponse à ta question Léo. »

Max : « Vous connaissez la méthode. Je vous rappelle qu’il faut regarder les grandeurs et les unités représentées sur les axes ce qui vous permettra de donner un titre au graphique. Ne vous inquiétez pas de l’unité utilisée sur l’axe vertical. Ensuite vous donnez l’évolution de la grandeur verticale en fonction de la grandeur horizontale. Puis vous pourrez conclure. Vous aurez alors la réponse à la question de Léo. Vous me ferez cela pour la prochaine fois. « 

Samuel et Léo : « Au revoir monsieur Max ! »

Séance suivante

La réaction inflammatoire

Max : « Bonjour à tous, enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour, bonjour… Bien, nous allons entamer un nouveau chapitre. »

Léo : « On ne fait pas de petit rappel aujourd’hui ? »

Max : « Pourquoi pas ? Léo, peux-tu me parler de l’infection bactérienne ? »

Léo : « Oui monsieur Max, je peux vous parler DES infections bactériennes. Il y a les infections locales. La bactérie reste sur le lieu de l’infection et se multiplie par mitose. Les nombreuses bactéries utilisent le dioxygène et les nutriments normalement destinés à l’organe infecté et ça dérègle le corps. Il y a aussi les toxémies comme le tétanos. Les bactéries restent également sur place et elles libèrent des toxines qui agissent à distance sur tout le corps. Et puis il y a les septicémies. Là, les bactéries se répandent dans tout l’organisme et l’infection se généralise. C’est très embêtant et ça peut être mortel. »

Max : « Très bien Léo ! Samuel, que peux-tu nous dire des infections virales ? »

Samuel : « Que c’est plus compliqué que les infections bactériennes 🙂 Vous nous avez dit de retenir que les virus sont des parasites cellulaires qui utilisent la cellule qu’ils infectent pour se multiplier. »

Max : « Tu as retenu l’essentiel Samuel. J’ajoute que la cellule se trouve légèrement modifiée. Nous verrons plus tard l’importance de ce détail. Pour le moment revenons à l’infection bactérienne. Imaginez que vous vous blessiez à la patte. »

Léo : « Aïe ! »

Samuel  : « Ouille ! »

Max :  » Mes pauvres petits… »

Léo : « Ça peut s’infecter ! »

Max : « Je vous expliquerai plus tard comment soigner les plaies. Avez vous déjà vu une plaie infectée ? »

Samuel et Léo : « … »

Max : « Voici une photographie d’une petite plaie cutanée infectée. On parle d’abcès cutané. Pourriez-vous identifiez les signes de l’infection ? »

Photographie d’un abcès cutané

Léo : « C’est gonflé et rouge ! »

Samuel : « Il y a du pus ! »

Max : « Bien observé 🙂 Il y a deux autres signes qui ne se voient pas sur la photographie. »

Léo : « Ça fait mal ! »

Samuel : « Et il me semble que c’est un tout petit peu plus chaud qu’autour… »

Max : « Très bien ! Vous venez de donner les signes de la réaction inflammatoire. C’est une réaction rapide du corps à l’infection. C’est ce qu’il se passe à chaque fois que vous avez une infection locale. « 

Léo : « Même pour une angine bactérienne par exemple ? »

Max : « Oui Léo. La gorge gonfle et s’échauffe légèrement. La muqueuse rougit et blanchit si du pus se forme. »

Samuel : « Et ça fait mal ! Surtout quand on avale… »

Léo : « Mais monsieur Max, qu’est ce que le pus ? »

Max : « Bonne question Léo ! Observons une goutte de pus au microscope. Voici une photographie. Faites-en un dessin. Nous verrons pour la légende.. »

Photographie d’une goutte de pus observé au microscope. Phagocytose : leucocytes phagocytant des bactéries. MO, CID, x 200 (format 24 x 36 mm).

Max : « Vos dessins sont très beaux mes charmants petits. Nous pouvons ajouter la légende. Vous avez représenté des bactéries et des leucocytes. »

Léo : « C’est quoi un leucocyte monsieur Max ? »

Max : « Ce sont les globules blancs. Ce mot vient du grec Leucos qui signifie blanc auquel on a ajouté le suffixe –cyte qui indique qu’on parle de cellules. Ce sont des cellules blanches présentes dans le sang et la lymphe. »

Samuel : « Alors si je comprends bien, dans le pus, il y a les cellules ennemis – ici se sont des bactéries – et des cellules qui sont nos défenseurs, les leucocytes. Il ya également de la lymphe. »

Max : « Oui Samuel, tu as bien compris. Le pus est donc un champ de bataille 🙂 Nous étudierons cela plus tard. « 

Samuel : « Monsieur Max, j’ai une question ! »

Max : « Je t’écoute Samuel. »

Samuel : « Jusque là nous avons vu qu’il existe des organes organisés en appareils ou en système quand ils servent à la même fonction biologique. Par exemple il y a tous les organes de la digestion qui forment l’appareil digestif. Est ce qu’il existe un appareil ou un système pour lutter contre les microbes ou est ce qu’il existe que des cellules ? »

Max : « Excellente question Samuel ! Il existe bien un ensemble d’organes qui ont comme fonction de lutter contre les microbes. Ces organes forment le système immunitaire. En voici un schéma. »

Max : « Les organes lymphoïdes primaires sont ceux qui fabriquent les cellules immunitaires c’est à dire tous les leucocytes. Et il y a de nombreux types de leucocytes. Nous en verrons quelques uns seulement. Les organes lymphoïdes primaires sont le thymus et la moelle osseuse située dans les os longs ou plats. Les organes lymphoïdes secondaires stockent ou permettent la circulation des leucocytes. Vous voyez en noir les vaisseaux lymphatiques. Ce sont des vaisseaux qui se trouvent généralement le long des vaisseaux sanguins et dans lesquels circulent la lymphe. La lymphe est un liquide incolore qui contient de l’eau, des sels et des leucocytes. Si vous avez déjà eu des cloques à cause de chaussures mal adaptées ou de brûlures vous avez déjà vu la lymphe 🙂 « 

Léo : « Monsieur Max, est-ce qu’il faut tout retenir le système immunitaire ? »

Max : « J’aimerais bien et vous en êtes capables. Mais retenez surtout qu’il existe. Bien, c’est suffisant pour aujourd’hui. Rangez vos affaires et sortez vous dégourdir les pattes. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Séance suivante

Les barrières naturelles

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. Vous êtes tous là… Léo, veux-tu faire le petit rappel de début de cours s’il te plaît. »

Léo : « Oui monsieur Max. Nous étudions les microbes. Un microbe est un être vivant de petite taille, invisible à l’œil nu. Pour l’observer il faut utiliser un microscope. Les microbes appartiennent à différents groupes biologiques. Il y a les bactéries, les virus, les protozoaires, les micro-acariens, les micro-champignons… Tous les microbes ne rendent pas malades. Ce sont seulement les microbes pathogènes qui rendent malades. Certains nous sont indispensables comme ceux qui constituent le microbiote intestinal ou le microbiote buccal. Et il y a ceux qui nous permettent de faire des aliments comme le fromage, le yaourt… »

Max : « Très bien Léo. Samuel, veux-tu prendre la suite ? »

Samuel : « Oui monsieur Max. Un être vivant ou un objet qui ne porte aucun microbe est dit stérile. Mais c’est très difficile d’obtenir un objet stérile. Pour un être vivant c’est impossible. C’est à cause de la contamination. La contamination est la transmission de microbes d’un objet ou d’un être vivant à un autre objet ou un autre être vivant. On limite souvent la contamination à la transmission de microbes entre individus mais c’est une imprécision. Les objets sont souvent source de contamination. L’air, l’eau ou même les aliments peuvent nous contaminer. »

Max : « Bravo mes petits, vous connaissez parfaitement vos leçons.

Léo : « Monsieur Max puis-je poser une question ? »

Max : « Bien sûr Léo. »

Léo : « Monsieur Max, comment se fait-il que nous ne soyons pas toujours malades avec tous les microbes qu’il y a dans notre environnement ? D’autant plus que dès que je prête mon crayon à Samuel je le contamine. Et là, je vous contamine en vous parlant. Je suis désolé de vous contaminer monsieur Max. »

Max :  » 🙂 Il ne faut pas être désolé Léo. Je te rends ta contamination en te répondant 🙂 Mes petits, vous avez le don de poser les bonnes questions ! Qu’est ce qui fait que nous ne sommes pas malades plus souvent ? C’est ce que nous allons étudier dans la suite du cours. Commençons pas nos barrières naturelles. »

Samuel : « Il y a la peau monsieur Max ! Elle empêche les microbes d’entrer ! »

Max : « Pas seulement. Vous ai-je déjà schématisé un être vivant ? »

Léo : « Oui monsieur Max 🙂 Vous aviez fait un cercle au tableau. »

Samuel : « Le trait représente la peau. Ce qui est à l’intérieur du cercle est dans l’organisme, alors que ce qui est à l’extérieur du trait est dans l’environnement. »

Max : « Exact Samuel ! Affinons un peu. Je peux ajouter le tube digestif à ce schéma… »

Max : « Voilà ! Nous pourrions ajouter d’autres organes comme les poumons ou la vessie mais cela compliquerait inutilement pour le moment. »

Léo : « Si je me souviens bien, ce qui est dans le tube digestif n’est pas dans le corps. »

Samuel : « Ben oui ! Pour entrer dans le corps il faut traverser le trait noir -la peau- ou le trait rouge… Monsieur Max, le trait rouge, que représente t-il ? »

Max : « Encore une bonne question ! Ce sont les muqueuses digestives. On appelle muqueuses les revêtements des cavités externes de l’organisme. »

Samuel : « Si je comprends bien, au niveau du visage il y a la peau. Puis les lèvres et si on continue dans la bouche on trouve la muqueuse buccale. »

Max : « Oui Samuel. »

Léo : « Ou alors il y a les narines avec la muqueuse nasale. »

Max : « Nous pourrions ajouter les muqueuses œsophagienne, gastrique, intestinale, vaginale… Toutes les muqueuses produisent des sécrétions appelées mucus qui contribuent, entre autres, à empêcher les microbes d’entrer. »

Samuel : « Comme ce qu’on a dans le nez ? »

Max : « Oui Samuel. Excellent exemple puisque la muqueuse nasale produit ce qu’on appelle de la morve. Je sais, ce n’est pas très ragoutant. En latin, mucus signifie morve. »

Léo : « Alors, en résumé, le corps est protégé par la peau et les muqueuses qui produisent des mucus. Grâce à ces barrières naturelles les microbes ne peuvent pas entrer dans l’organisme. »

Samuel : « Mais il peuvent être à la surface de la peau ou dans les cavités naturelles. Ce n’est pas grave puisqu’ils sont toujours à l’extérieur du corps. »

Max : « Vous avez tout compris ! Je vous distribue deux documents pour préciser un peu ce que nous venons de voir puis nous noterons la leçon du jour. »

Léo : « Oulala ! Dix millions de microbes par centimètres carrés dans la paume de la main ! Et les élèves se serrent la main le matin pour se saluer ! »

Samuel : « Ils mélangent tous leurs microbes ! »

Léo : « Et les filles qui se font la bise ! Smack ! Smack ! Et hoplà les microbes plein le visage ! »

Samuel : « Bonjour la contamination ! »

Max : « C’est vrai, mais comme vous le disiez vous mêmes ils sont toujours à l’extérieur du corps… »

Léo : « Ils doivent bien trouver un moyen d’entrer ! »

Max : « Certes, nous verrons cela plus tard. Voici un autre document… »

Samuel : « Monsieur Max, je ne veux pas vous vexer mais ce schéma ressemble quand même un peu plus à un être humain. »

Max : « Tu ne me vexes pas Samuel. Mais mon schéma a le mérite de rendre compte de tous les animaux qui ont un tube digestif allant d’une bouche à un anus 🙂 « 

Léo : « Monsieur Max, qu’est ce que ça veut dire ‘pH’ ? »

Max : « Vous le verrez en chimie… Disons que c’est un indice d’acidité. Un pH neutre est à 7. Tout ce qui a un pH inférieur à 7 est acide. Tout ce qui a un pH supérieur à 7 est basique. Les microbes sont généralement adapté à un pH de 7. »

Léo : « Donc si c’est acide ou basique ils n’aiment pas. Ils sont même peut-être détruits. »

Max : « Oui Léo. »

Samuel : « Il y a donc des barrières mécaniques et chimiques qui nous protègent naturellement contre les microbes. »

Max : « Et nous pouvons noter la leçon. Prenez vos cahiers et notez. »

III. LES BARRIÈRES NATURELLES.

Le corps est protégé des microbes par les barrières naturelles que sont la peau et les muqueuses. Les muqueuses recouvrent les cavités externes de l’organisme. Elles produisent des mucus. Les barrières naturelles offrent donc une protection mécanique mais aussi chimique. Grâce à ces barrières naturelles, les microbes restent à l’extérieur du corps.

Séance suivante

D’autres exercices…

La polydactylie

La polydactylie se définit par la présence de doigts supplémentaires à la main et au pied. Le cas le plus fréquent est la présence d’un sixième doigt. Il peut être fonctionnel comme sur la photographie ci-dessous.

Radiographie de la main gauche d’un individu atteint de polydactylie.

La polydactylie est un caractère physique codé par le gène GLI situé sur le bras long des chromosomes n°7. Il existe deux versions de ce gène. L’allèle GLI- donne une main ou un pied possédant 5 doigts. L’allèle GLI +, beaucoup plus rare, donne 6 doigts. L’allèle GLI+ est dominant par rapport à l’allèle GLI-.

Dans un tableau, indiquez les combinaisons d’allèles possibles pour un individu à 6 doigts puis pour un individu à 5 doigts.

Individus à 6 doigts :

Paire de chromosomes n°7 n°7
Génotypes GLI+/GLI+ GLI+/GLI-
Phénotype [6 doigts] [6 doigts]

Individus à 5 doigts :

Paires de chromosomes n°7
Génotype GLI-/GLI-
Phénotype [5 doigts]

L’hypertrichose des oreilles

L’hypertrichose des oreilles est un caractère physique un peu particulier. Les individus qui en sont atteints ont une touffe de poils qui leur sort des oreilles. Ce caractère physique est codé par un gène, noté T, porté par le chromosome Y. Il ne touche donc que les mâles. L’allèle T+ donne le phénotype normal c’est-à-dire sans poils sans les oreilles. C’est l’allèle T- qui est responsable de l’hypertrichose des oreilles.

Représentez les combinaison d’allèles possibles pour un individu porteur du caractère puis pour un individu qui n’est pas atteint.

Individus atteints d’hypertrichose des oreilles :

Paire de chromosomes X/Y
Génotype 0/ T-
Phénotype [Hypertrichose]

Individus non-atteints d’hypertrichose des oreilles :

Paires de chromosomes X/Y X/X
Génotypes 0/T+ 0/0
Phénotype [Non atteint] [Non atteint]

Combinons ces caractères

Dans un tableau, représentez les combinaisons d’allèles possibles pour un homme ayant 6 doigts et atteint d’hypertrichose des oreilles.

Paires de chromosomes n°7 X/Y n°7 X/Y
Génotypes GLI+/GLI+ 0/T+ GLI+/GLI- 0/T+
Phénotype [6 doigts ; hypertrichose des oreilles]

Séance suivante

Quelques exercices…

Max : « Bien, nous avons étudié les gènes et les allèles. Je vous ai déjà donné quelques exercices. En voici d’autres. Amusez vous bien 🙂 « 

Le système rhésus…

Le système rhésus est, avec le système ABO, l’un des principaux systèmes de groupes sanguins. Il doit son nom à un singe d’Asie du sud-est, le macaque rhésus (Macaca mulatta, Cercopithécidés), qui servit d’animal d’expérience à la fin des années 1930 dans les recherches sur le sang.

Un macaque rhésus (Source pbs.org)

En simplifiant, on peut dire que le caractère rhésus dépend d’un gène situé sur le bras court des chromosomes n°1. L’allèle Rh+ est responsable de la présence du caractère alors que l’allèle Rh- cause son absence. L’allèle Rh+ est dominant par rapport à l’allèle Rh-.

Donnez les combinaisons d’allèles possibles pour un individu ayant le caractère rhésus positif puis pour un individu ayant le caractère rhésus négatif.

Paire de chromosomes n°1 n°1 n°1
Génotypes Rh+/Rh+ Rh+/Rh- Rh-/Rh-
Phénotypes [Rhésus+] [Rhésus+] [Rhésus-]

Le système ABO

Le système de groupes sanguins ABO a été découvert en 1901 par Karl Lansteiner alors qu’il cherchait à comprendre pourquoi certaines transfusions sanguines permettaient de sauver des individus, alors que d’autres conduisaient à leur mort.

Cliquer ici pour avoir plus d’informations sur les groupes sanguins ABO

Ce système de groupes sanguins est un caractère physique. Il est codé par un gène situé sur le bas du bras long des chromosomes n°9. Il existe trois allèles. L’allèle A est responsable de la formation de molécules de type A à la surface des globules rouges. L’allèle B permet la fabrication de molécules de type B et l’allèle O permet la fabrication d’aucune molécule de surface. Lorsqu’ils sont présents ensemble, les allèles A et B s’expriment tous les deux. On dit qu’ils sont codominants. Les allèles A et B sont dominants par rapport à l’allèle O.

Représentez dans un tableau les chromosomes et les allèles qu’ils portent pour des individus de groupes sanguins A, B, AB et O.

Individus de groupe sanguin A :

Paire de chromosomes n°9 n°9
Génotypes A/A A/O
Phénotypes [Groupe A] [Groupe A]

Individus de groupe sanguin B :

Paires de chromosomes n°9 n°9
Génotypes B/B B/O
Phénotypes [Groupe B] [Groupe B]

Individu de groupe AB :

Paire de chromosomes n°9
Génotype A/B
Phénotype [Groupe AB]

Individu de groupe O :

Paire de chromosomes n°9
Génotype O/O
Phénotype [Groupe O]

Combinons ces deux systèmes de groupes sanguins

Sur cette carte de groupe sanguin nous pouvons voir que Caliste est de groupe O+, c’est-à-dire de groupe O et rhésus positif.

Dans un tableau, représentez les chromosomes et toutes les combinaisons d’allèles possibles pour Caliste.

Donnez ensuite les combinaisons d’allèles possibles pour un individu A+.

Les allèles de Caliste :

Paires de chromosomes n°1 n°9 n°1 n°9
Génotypes Rh+/Rh+ O/O Rh+/Rh- O/O
Phénotype [O+] [O+]

Des individus de groupes A+ :

Paires de chromosomes n°1 n°9 n°1 n°9
Génotypes Rh+/Rh+ A/A Rh+/Rh- A/A
Phénotype [A+] [A+]
Paires de chromosomes n°1 n°9 n°1 n°9
Génotypes Rh+/Rh+ A/0 Rh+/Rh- A/O
Phénotype [A+] [A+]

Séance suivante

Un gène, des allèles

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. Bien, qui veut faire le petit rappel ? Juste le dernier cours… Léo ? »

Léo : « Oui monsieur Max. Nous avons vu que chaque caractère héréditaire est porté par une petite portion de chromosome qui porte l’information génétique le codant. On appelle cette petite information génétique gène. »

Max : « Très bien Léo. »

Samuel : « Monsieur Max, j’ai une question ! »

Max : « Nous t’écoutons Samuel. »

Samuel : « C’est à cause du devoir. Dans le devoir il y avait un exercice sur la forme du lobe de l’oreille. C’est un caractère physique présent dans presque toutes les générations de la famille et il est indépendant de l’environnement. C’est donc un caractère héréditaire. J’en déduis qu’il y a un gène pour la forme de l’oreille quelque part sur un chromosome. Mais le lobe de l’oreille peut avoir deux formes. Il peut être libre ou adhérent. Monsieur Max, les gènes existeraient-ils sous plusieurs versions ? »

Dessins d’un lobe d’oreille libre (à gauche) et d’un lobe d’oreille adhérent (à droite).

Max : « Mon petit Samuel… Quel talent ! J’en suis tout tourneboulé… Un élève si brillant qu’il devine par lui même ce que je dois vous faire découvrir ! Léo, ne sois pas jaloux de ce que je viens de dire au sujet de Samuel. Je sais bien que toi aussi tu te posais cette question ! Quel plaisir de faire ce métier ! »

Samuel : « Monsieur Max, je suis ravi de vous voir si extatique mais pourriez-vous répondre à ma question s’il vous plaît ? »

Max : « Je peux ! Mais il n’y a rien à ajouter. Les gènes peuvent effectivement exister sous plusieurs versions appelées allèles du gène. Pour la forme du lobe de l’oreille il existe un gène localisé sur le bras court du chromosome 22. Ce gène existe sous deux formes. L’allèle noté l+ code pour un lobe libre alors que l’allèle l- code pour le lobe adhérent. Vous suivez ? »

Samuel : « Oui monsieur Max. »

Léo : « Mais… Il y a des paires de chromosomes donc deux chromosomes 22. Alors un individu peut avoir deux allèles, un sur chaque chromosome 22. Sont-ils toujours identiques ? »

Max : « Bonne question mon Léo. Non, les allèles ne sont pas forcément les mêmes. »

Samuel : « Alors un individu peut avoir deux fois l’allèle l+, deux fois l’allèle l- ou alors un allèle l+ et un allèle l-. »

Max : « C’est ça ! »

Léo : « S’il a deux fois l’allèle l+ il aura les lobes libres puisqu’il a deux fois l’allèle qui donne les lobes libres. Avec deux allèles l- il aura les lobes adhérents. Mais avec un allèle l+ et un allèle l- ? Comment seront ses lobes ? »

Max : « J’attends vos hypothèses… »

Léo : « On pourrait supposer qu’il a un lobe libre et un lobe adhérent. Mais si on imagine d’autres caractères… Ça peut pas marcher. Le lobe ne peut être à moitié adhérent et à moitié libre… Alors je suppose que ses lobes seront entièrement libres. Comme si l+ gagnait contre l-. »

Max : « Samuel ? »

Samuel : « Je suis d’accord avec le raisonnement de Léo et avec son hypothèse. »

Max : « Et vous avez raison tous les deux ! Effectivement, l’allèle l+ s’exprime seul quand il est en présence de l’allèle l-. On dit que l+ est dominant par rapport à l-. Je vais vous faire une représentation de tout cela. »

Chromosomes n°22 n°22 n°22
Génotype l+/l+ l+/l- l-/l-
Phénotype [Libre] [Libre] [Adhérent]

Samuel : « Monsieur Max, serons-nous obligés de représenter les chromosomes dans le devoir ? Parce que le tableau est suffisant il me semble. »

Max : « Tout dépendra de la consigne Léo. Il faudra bien lire le sujet. »

Samuel : « D’accord monsieur Max. »

Léo : « Monsieur Max, pourriez-vous définir le génotype et le phénotype s’il vous plaît ? »

Max : « Bien sûr Léo. Nous allons le faire dans le cours. Prenez vos cahiers et notez la leçon. »

II. UN GÈNE, DES ALLÈLES.

Un gène est l’information génétique qui code pour un caractère physique. Mais certains de ces caractères existent sous plusieurs formes. Il existe donc plusieurs formes du gène. Elles sont appelées allèles du gène.

Comme un gène est présent sur les deux chromosomes d’une paire, un individu peut porter soit deux fois le même allèle soit 2 allèles différents. Dans ce cas, soit un seul allèle du gène s’exprime et il est dit dominant par rapport à l’autre, soit les deux s’expriment simultanément et ils sont dit codominants.

On appelle phénotype l’ensemble des caractères physiques d’un individu. Le génotype est l’ensemble de ses allèles.

Le phénotype d’un individu dépend de ses caractères héréditaires et de ses caractères acquis. Or les caractères héréditaires dépendent des allèles qu’il possède. Et les caractères acquis dépendent de son environnement. On peut donc dire que le phénotype d’un individu dépend de son génotype et de son environnement.

Max : « Avez-vous des questions ? »

Samuel : « Monsieur Max, je crois avoir compris mais je ne suis pas sûr de moi. Allons-nous faire d’autres exercices ? »

Max : « Lors de la prochaine séance nous allons étudier les groupes sanguins du système ABO. Et je mettrai quelques exercices à votre disposition dans mon blog. »

Samuel : « Merci monsieur Max. »

Max : « Vous avez bien travaillé. Vous pouvez ranger vos affaires et partir. Et n’oubliez pas de réviser 🙂 « 

Séance suivante

Le gène, unité d’information génétique

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. Nous allons continuer notre découverte de la génétique. Savez-vous ce qu’est un gène ? »

Samuel : « Non monsieur Max. »

Léo : « Moi non plus monsieur Max. »

Max : « C’est normal. C’est ce que nous allons étudier. Commençons par ce document… »

Les chromosomes sexuels sont connus depuis 1921 mais leur rôle dans la détermination du sexe n’a été établi que dans les années 1960. L’implication d’une portion du chromosome Y dans la formation des testicules a été mise en évidence grâce à l’analyse du caryotype de femmes XY et d’hommes XX. Sept zones différentes ont été mises en évidence sur le chromosome Y.

Max : « Je vous laisse quelques minutes pour étudier ce document puis vous me direz ce que vous en tirez. »

Quelques minutes plus tard…

Max : « Alors ? Quelqu’un veut prendre la parole ? »

Léo : « Moi ! Je veux bien ! »

Samuel : « Moi aussi ! »

Max : « Malheureusement je ne peux en interroger qu’un seul. Léo, laissons la parole au plus petit d’entre nous. »

Samuel : « En sciences, il faut toujours commencer par décrire ce que l’on voit. Les deux premiers caryotypes montrent les situations normales. En A, l’homme a des testicules et son caryotype comporte un chromosome X et un Y. En B, la femme a des ovaires et son caryotype comporte deux chromosomes X. Léo, veux-tu faire la suite de la description ? « 

Léo : « Oui, merci Samuel. Je te laisserai faire la conclusion. En C nous voyons une femme qui a des ovaires. Mais son caryotype comporte un X et un Y. Mais il manque un petit morceau du chromosome Y. On peut dire qu’il y a délétion du fragment 1. En D, c’est une femme qui a des ovaires. Son caryotype comporte bien deux chromosomes X mais l’un d’entre eux est anormal. Il lui manque une partie de X et à la place, il y a les fragments 6 et 7 d’un chromosome Y. En E, il s’agit d’un homme avec des testicules. Mais il a deux chromosomes X. Toutefois, l’un d’entre eux porte le fragment 1 d’un chromosome Y. »

Max : « Bravo pour cette description. Je précise qu’on appelle translocation le transfert d’une partie de chromosome sur un autre. Samuel, es-tu toujours d’accord pour conclure ? »

Léo : « Bien sûr monsieur Max. Nous pouvons voir que quels que soient les chromosomes sexuels présents, l’individu est un homme avec des testicules si il a le fragment 1 du chromosome Y. Nous pouvons affirmer que c’est ce fragment de chromosome Y qui détermine la présence des testicules. »

Max : « Encore une fois bravo à tous les deux ! Vous venez de découvrir ce qu’est un gène. Il s’agit d’un fragment de chromosome qui code pour un caractère physique. »

Léo : « Monsieur Max, la présence de ce fragment de chromosome permet la fabrication des testicules. Est ce suffisant pour faire un homme ? »

Max : « Bonne question Léo ! Posez vos stylos et écoutez moi. Ce que je vais vous raconter est en dehors du programme. Vous savez déjà que le sexe de l’individu est fixé par les chromosomes sexuels qui sont présents dès la cellule-œuf. On dit que le sexe est déterminé. Toutefois, les organes génitaux ne sont pas tout de suite visibles. Quand ils commencent à se mettre en place ils ne sont pas encore différenciés. A la place d’un pénis et de testicules, ou d’une vulve, il y a un tubercule génital et des crêtes génitales. De même, les gonades ne sont pas différenciées. Ce n’est que vers la 7ème semaine post-coïtum que ces gonades indifférenciées se transforment en testicules sous l’influence du fragment 1 du chromosome Y. Les testicules se mettent ensuite à produire des hormones sexuelles masculines qui vont masculiniser l’individu pendant la vie fœtale, puis plus tard lors de la puberté. En l’absence du fragment 1 du chromosome Y, donc chez les petites filles, les gonades indifférenciées vont se transformer en ovaires à partir de la 8ème semaine. Le corps se féminise lors de la vie fœtale puis la puberté. Pour être complet, enfin… un peu complet… Le tubercule génital deviendra le gland sous l’influence des hormones sexuelles masculines et le clitoris sous l’influence des hormones sexuelles féminines. Le bourrelet génital deviendra la hampe du pénis ou les lèvres. Alors oui mon petit Léo, c’est bien ce gène qui fait qu’on est un homme ou une femme. Du moins génétiquement et physiquement. Avez-vous des questions ? »

Samuel : « Monsieur Max, vous avez bien dit que ce n’est pas au programme. Il n’y aura pas d’interrogation sur ce que vous venez d’expliquer alors. »

Max : « Non Samuel, rassure toi. Pas d’autres questions ? »

Léo : « Non monsieur Max. »

Max : « Alors prenez vos cahier nous allons écrire la leçon. »

L’ORGANISATION DE L’INFORMATION GÉNÉTIQUE

I. LE GÈNE, UNITÉ D’INFORMATION GÉNÉTIQUE.

Un gène est un fragment de chromosome qui code pour un caractère physique.

Un gène occupe toujours la même place sur les deux chromosomes d’une paire.

On compte environ 20 000 gènes dans l’espèce humaine. Chaque paire de chromosomes porte un nombre variable de gènes.

L’ensemble des gènes d’une espèce définit son génome.

Max : « Bien, si vous n’avez pas de questions, vous pouvez ranger vos affaires. Au revoir et travaillez bien. »

Léo et Samuel : « Au revoir monsieur Max. »

Séance suivante

L’origine des séismes – la leçon

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max ! »

Léo : « Monsieur Max, allez-vous rendre les évaluations de la séance précédente ? »

Max : « Oui, à la fin de l’heure. La moyenne de la classe est de 20/20 mais je ne vous donnerai pas vos notes tout de suite 🙂 Aujourd’hui nous allons nous reposer un peu en faisant la leçon qui correspond aux deux dernières activités. »

Léo : « Nous ne faisons pas le petit rappel ? »

Max : « Si. Si tu veux Léo. »

Léo : « Je fais dans l’ordre où ça se passe. Pas dans l’ordre dans lequel on a étudié. Au début il y a des contraintes qui s’exercent sur les roches. Il ne se passe rien jusqu’à ce que ça se casse. La cassure débute en un point appelé foyer et se propage. Ça donne une faille. Au moment de la cassure des ondes sont émises. Elles se propagent dans toutes les directions de l’espace en s’atténuant. En arrivant à la surface de la terre elles provoquent un tremblement de terre. Et voilà ! »

Max : « Très bien Léo. C’est à peu de choses près ce que nous allons noter dans les cahiers. »

Samuel : « Monsieur Max, c’est toujours comme ça en géologie ? On observe des conséquences et on remonte petit à petit au début du phénomène. »

Max : « Oui Samuel. C’est ce qui me plaît dans cette science assez mal aimée. C’est comme une enquête 🙂 On cherche des indices pour raconter une histoire. »

Samuel : « Moi ça me plaît bien 🙂 « 

Max : « J’en suis ravi 🙂 Maintenant ouvrez vos cahiers et notez ! »

IV. L’ORIGINE DES SÉISMES

A tout moment, des contraintes s’exercent sur les roches. Si les contraintes sont croissantes, ces roches se cassent d’un seul coup. La cassure débute en un point appelé foyer. Elle se propage et donne une faille. Au moment de la cassure, des ondes sismiques sont émises. Elles se propagent dans toutes les directions de l’espace en s’atténuant. En arrivant à la surface elles créent un tremblement de terre qui peut avoir de terribles conséquences sur les paysages et les humains.

Les contraintes sont la conséquence de l’énergie interne de la Terre accumulée lors de sa formation.

Max : « Bien. Le chapitre est terminé. Je vous montrerai la répartition mondiale des séismes plus tard. Je vous conseille de bien revoir vos leçons. »

Samuel : « On peut aller en récréation ? »

Max : « Bien sur mes petits. Amusez vous bien 🙂 « 

Samuel et Léo : « Au revoir monsieur Max ! »

Séance suivante