Blog

Modèle de cycle cellulaire

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. Comment allez-vous mes petits ? »

Léo : »Très bien monsieur Max, et vous-même ? »

Max : « Très bien mon petit Léo. Bon, il est temps de faire le petit rappel habituel. Qui est volontaire ? »

Samuel : « Moi monsieur Max ! »

Max : « Nous t’écoutons ! »

Samuel : « Nous avons vu, grâce à une étude de graphique, que les cellules qui vont se multiplier dupliquent leur A.D.N. Elles fabriquent une copie de leur A.D.N. afin de pouvoir donner un filament complet à chacune de leurs deux cellules-filles. C’est ce qu’on appelle la duplication de l’A.D.N. Notons que la cellule-mère n’existe plus à la fin de la multiplication cellulaire. Pour pouvoir distribuer leurs filaments d’A.D.N. elles les condensent en chromosomes doubles. Ils s’alignent à l’équateur de la cellule puis se coupent en deux et migrent vers les pôles de la cellule. Là, ils se décondensent en filaments simples et la cellule-mère peut se couper en deux cellules-filles identiques. »

Max : « Excellent résumé Samuel ! »

Léo : « Bravo Samuel ! Bravo ! »

Max : « Apparemment tout est compris. Je vais vous donner un petit exercice pour vérifier cela. Voici un document qui montre les étapes du cycle cellulaire schématisées. Il faut les remettre dans l’ordre et les commenter. Au travail ! »

Léo : « Monsieur Max, nous avons terminé ! »

Max : « Déjà ! Quelle efficacité ! Samuel ayant fait un brillant résumé tout à l’heure c’est à toi, Léo, de faire la correction de cet exercice. Montre moi ton travail. Mmmm… Mmmmmm… Excellent ! Au tableau mon petit ! Mais attends un instant. Nous allons nous servir de ton travail comme texte pour la leçon. Je note le titre du paragraphe au tableau. « 

III. MODÈLE DE CYCLE CELLULAIRE.

Le noyau, limité par l’enveloppe nucléaire, contient un filament simple d’A.D.N. coupé en quatre morceaux qui correspondent aux quatre futurs chromosomes.
Nous pouvons voir les deux paires de chromosomes doubles. Il y a donc eu duplication de l’A.D.N. puis le filament double s’est condensé en deux paires de chromosomes doubles.
L’enveloppe nucléaire n’est plus visible et les chromosomes se sont alignés à l’équateur de la cellule. Pour être précis ce sont les centromères des chromosomes qui sont alignés.
Les chromosomes doubles se sont scindés en deux. Chaque chromatide est devenue un chromosome simple. Et les chromosomes simples migrent vers les pôles de la cellule. En réalité il y a deux paires de chromosomes simples qui migrent vers chaque pôle.
A chaque pôle, 4 chromosomes simples se sont décondensés en 4 filaments simples. Une enveloppe nucléaire s’est reformée autour de ces filaments simples. Puis la cellule-mère s’est coupée en deux et nous avons maintenant deux cellules-filles identiques contenant exactement la même quantité d’A.D.N.

Modèle-de-cycle-cellulaire

Max : « Excellent travail mon petit Léo ! Vous êtes vraiment de brillants élèves ! Nous pouvons maintenant conclure ce chapitre. Prenez vos cahier et notez. »

Conclusion :

Le cycle cellulaire est l’ensemble des étapes qui constituent et délimitent la vie d’une cellule. Ce cycle est constitué d’une phase de croissance durant laquelle la cellule grossit, d’une phase lors de laquelle elle recopie son matériel génétique (duplication de l’A.D.N.) et d’une phase où celle-ci se divise (mitose) pour donner naissance à deux cellules filles identiques. Les cellules filles reproduiront ce cycle, et ainsi de suite.

La duplication de l’A.D.N. est une étape indispensable pour assurer la reproduction conforme des cellules.

Max : « Avez-vous des questions ? »

Léo : « Oui monsieur Max. Vous dites que les cellules grandissent au début du cycle cellulaire. Mais il me semble que nous avons vu que cette étape n’existe pas lors du développement embryonnaire. Ai-je bien compris ? »

Max : « Bonne question mon petit Léo. Vous savez qu’en biologie les règles absolues sont rares. En d’autres termes, il existe souvent des exceptions. Le développement embryonnaire est une période un peu particulière de la vie de l’individu. Surtout à son début. Le petit embryon se développe très vite. Peut-être avez-vous remarqué qu’une cellule-oeuf est très grande par rapport aux autres cellules du même individu. Cela vient de la taille de l’ovule. Les scientifiques pensent que cela permet de se dispenser de la phase de croissance cellulaire avant la mitose. Les cellules embryonnaires se multiplient sans phase de croissance de sorte qu’elles sont de plus en plus petites. En fait cela dure jusqu’à ce que les cellules embryonnaires aient une taille plus habituelle pour des cellules. Ensuite, la phase de croissance apparaît. Léo, ai-je répondu à ta question ? »

Léo : « Oui monsieur Max. Merci monsieur Max. »

Max : « Alors allez vous défouler en récréation. Vous avez encore bien travaillé. Au-revoir mes petits. »

Samuel et Léo : « Au-revoir monsieur Max. »

Séance suivante

Les chromosomes lors de la mitose

Max : « Bonjour à tous ! enlevez vos blousons, asseyez vous et sortez vos affaires. Aujourd’hui c’est toi, Samuel, qui vas nous faire le petit rappel de début de cours. Nous t’écoutons. »

Samuel : « Nous avons vu que le nombre de cellules dans un organisme augmente par multiplications cellulaires ou mitoses. Lors de la mitose, une cellule mère donne deux cellules filles identiques entre elles. Pour se préparer à la multiplication cellulaire, une cellule recopie son A.D.N. : c’est la duplication de l’A.D.N. »

Léo : « Rhoooo ! »

Samuel : « Les chromosomes dansent ! »

Max : « Oui 🙂 On pourrait parler de la danse des chromosomes. Mais ce ne serait pas très scientifique. Avez-vous pu saisir les étapes du phénomènes ? »

Léo : « Pas tout à fait… »

Samuel : « Moi non plus… »

Max : « Peut-être que des images fixes seraient plus faciles à interpréter. En voici. Elles se lisent de haut en bas et de gauche à droite… »

Max : « Alors ? Cela vous facilite t-il l’interprétation ? »

Léo : « Oui monsieur Max. »

Max : « Alors faites, chacun à votre tour, le commentaire d’une de ces images. Léo, à toi de commencer. »

Léo : « La cellule se prépare à sa multiplication. Elle duplique son filament d’A.D.N. A la fin de la duplication elle aura un filament double d’A.D.N. »
Samuel :  » Le filament double commence à se condenser en chromosomes. Dans un chromosome, les deux chromatides sont identiques car l’une a été obtenue par duplication de l’autre. »
Léo : « Les deux filaments d’A.D.N. se sont complètement condensés en chromosomes doubles. »
Samuel : « Les chromosomes doubles s’alignent à l’équateur de la cellule. »
Léo : « Les chromosomes doubles se coupent en deux. Chacune des chromatides devient un chromosome simple. Un lot de 46 chromosomes simple migre vers chaque pôle de la cellule. »
Samuel : « Les 46 chromosomes simples sont arrivés aux pôles de la cellule mère. Ils se décondensent en un filament simple. Puis la cellule va se couper en deux. »

Max : « Bravo ! Voici un autre petit film qui reprend ce que vous venez de décrire si brillamment. »

Max : « Bien, je vais vous faire un schéma qui reprend les différents états de l’A.D.N. au cours d’un cycle cellulaire. Suivez bien, vous noterez après. »

Max : « Si vous n’avez pas de question, je vous laisse ranger vos affaires. Révisez bien mes petits. »

Séance suivante

La mitose

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. Pendant ce temps je fais l’appel. Léo, Samuel. Bien, vous êtes tous présents. Nous avons terminé la première partie de la génétique. Je vous en rappelle l’essentiel : le phénotype d’un individu dépend de son génotype et de son environnement. Nous allons maintenant étudier la transmission de l’information génétique au sein d’un individu. Mais avant cela voici un document. Que pouvez-vous m’en dire ? »

Samuel : « Moi monsieur Max ! Moi ! »

Max : « Quel enthousiasme Samuel 🙂 Je t’écoute. »

Samuel : « Les quatre photographies montrent les multiplications des cellules au tout début du développement de l’embryon. Nous voyons que la cellule-œuf donne deux cellules embryonnaires. Puis chacune des deux cellules se multiplie, ce qui donne un embryon de quatre cellules, puis huit, puis 16 et ainsi de suite. »

Max : « Très bien Samuel. Léo, as-tu quelque chose à ajouter ? »

Léo : « Oui monsieur Max. Les deux photographies de droite montrent que chez l’adulte il y a de très nombreuses cellules. Et il existe différents types de cellules alors que chez l’embryon toutes les cellules se ressemblent. »

Max : « Très bien Léo. On dit que les cellules se différencient. Mais nous n’étudierons pas la différenciation cellulaire au collège. Pourriez-vous me parler du document situé au centre ? »

Léo : « Oui monsieur Max. On y voit des chromosomes par paires rangées par ordre décroissant de taille. C’est donc un caryotype. Samuel, veux-tu continuer ? »

Samuel : « Oui, merci Léo. Je compte 22 paires de chromosomes homologues et il y a en plus un chromosome X et un chromosome Y. Cela fait 46 chromosomes. J’en déduis que c’est un caryotype humain. La présence d’un chromosome X et d’un chromosome Y me permet d’affirmer que c’est le caryotype d’un homme. A toi Léo 🙂 « 

Léo : « Les flèches qui partent du caryotype et qui vont jusqu’aux différentes photographies indiquent que toutes ces cellules ont le même caryotype. Mais ça, on le savait déjà 🙂 « 

Max : « Bravo mes petits ! »

Léo : « Merci monsieur Max. »

Max : « Vous avez magnifiquement décrit ce document mais voyez-vous le problème qu’il pose ? »

Léo :  » Mmmmm… »

Samuel : « Oui ! Je vois ! Une cellule a la quantité d’A.D.N. qui correspond à 46 chromosomes. Et elle donne deux cellules qui ont toutes les deux 46 chromosomes. Le problème est de savoir comment une cellule qui possède 46 chromosomes peut en donner 92. »

Max : « Élève Samuel vous m’impressionnez ! Bravo ! Bien, notons tout cela. »

LA TRANSMISSION DE L’INFORMATION GÉNÉTIQUE AU SEIN DE L’ORGANISME

Observation : Lors de sa conception, un individu est constitué d’une seule cellule. C’est la cellule-œuf. A l’état adulte, ce même individu comportera plus de 38 000 milliards de cellules.

Problème : Comment l’augmentation du nombre de cellule est-elle assurée dans l’organisme ?

I. LA MULTIPLICATION CELLULAIRE OU MITOSE.

Dans l’organisme, le nombre de cellules augmente par multiplication cellulaire ou mitose. Une cellule mère donne naissance à deux cellules filles qui ont le même caryotype et la même information génétique.

Schéma de la mitose

Séance suivante

D’autres exercices…

La polydactylie

La polydactylie se définit par la présence de doigts supplémentaires à la main et au pied. Le cas le plus fréquent est la présence d’un sixième doigt. Il peut être fonctionnel comme sur la photographie ci-dessous.

Radiographie de la main gauche d’un individu atteint de polydactylie.

La polydactylie est un caractère physique codé par le gène GLI situé sur le bras long des chromosomes n°7. Il existe deux versions de ce gène. L’allèle GLI- donne une main ou un pied possédant 5 doigts. L’allèle GLI +, beaucoup plus rare, donne 6 doigts. L’allèle GLI+ est dominant par rapport à l’allèle GLI-.

Dans un tableau, indiquez les combinaisons d’allèles possibles pour un individu à 6 doigts puis pour un individu à 5 doigts.

Individus à 6 doigts :

Paire de chromosomes n°7 n°7
Génotypes GLI+/GLI+ GLI+/GLI-
Phénotype [6 doigts] [6 doigts]

Individus à 5 doigts :

Paires de chromosomes n°7
Génotype GLI-/GLI-
Phénotype [5 doigts]

L’hypertrichose des oreilles

L’hypertrichose des oreilles est un caractère physique un peu particulier. Les individus qui en sont atteints ont une touffe de poils qui leur sort des oreilles. Ce caractère physique est codé par un gène, noté T, porté par le chromosome Y. Il ne touche donc que les mâles. L’allèle T+ donne le phénotype normal c’est-à-dire sans poils sans les oreilles. C’est l’allèle T- qui est responsable de l’hypertrichose des oreilles.

Représentez les combinaison d’allèles possibles pour un individu porteur du caractère puis pour un individu qui n’est pas atteint.

Individus atteints d’hypertrichose des oreilles :

Paire de chromosomes X/Y
Génotype 0/ T-
Phénotype [Hypertrichose]

Individus non-atteints d’hypertrichose des oreilles :

Paires de chromosomes X/Y X/X
Génotypes 0/T+ 0/0
Phénotype [Non atteint] [Non atteint]

Combinons ces caractères

Dans un tableau, représentez les combinaisons d’allèles possibles pour un homme ayant 6 doigts et atteint d’hypertrichose des oreilles.

Paires de chromosomes n°7 X/Y n°7 X/Y
Génotypes GLI+/GLI+ 0/T+ GLI+/GLI- 0/T+
Phénotype [6 doigts ; hypertrichose des oreilles]

Séance suivante

Quelques exercices…

Max : « Bien, nous avons étudié les gènes et les allèles. Je vous ai déjà donné quelques exercices. En voici d’autres. Amusez vous bien 🙂 « 

Le système rhésus…

Le système rhésus est, avec le système ABO, l’un des principaux systèmes de groupes sanguins. Il doit son nom à un singe d’Asie du sud-est, le macaque rhésus (Macaca mulatta, Cercopithécidés), qui servit d’animal d’expérience à la fin des années 1930 dans les recherches sur le sang.

Un macaque rhésus (Source pbs.org)

En simplifiant, on peut dire que le caractère rhésus dépend d’un gène situé sur le bras court des chromosomes n°1. L’allèle Rh+ est responsable de la présence du caractère alors que l’allèle Rh- cause son absence. L’allèle Rh+ est dominant par rapport à l’allèle Rh-.

Donnez les combinaisons d’allèles possibles pour un individu ayant le caractère rhésus positif puis pour un individu ayant le caractère rhésus négatif.

Paire de chromosomes n°1 n°1 n°1
Génotypes Rh+/Rh+ Rh+/Rh- Rh-/Rh-
Phénotypes [Rhésus+] [Rhésus+] [Rhésus-]

Le système ABO

Le système de groupes sanguins ABO a été découvert en 1901 par Karl Lansteiner alors qu’il cherchait à comprendre pourquoi certaines transfusions sanguines permettaient de sauver des individus, alors que d’autres conduisaient à leur mort.

Cliquer ici pour avoir plus d’informations sur les groupes sanguins ABO

Ce système de groupes sanguins est un caractère physique. Il est codé par un gène situé sur le bas du bras long des chromosomes n°9. Il existe trois allèles. L’allèle A est responsable de la formation de molécules de type A à la surface des globules rouges. L’allèle B permet la fabrication de molécules de type B et l’allèle O permet la fabrication d’aucune molécule de surface. Lorsqu’ils sont présents ensemble, les allèles A et B s’expriment tous les deux. On dit qu’ils sont codominants. Les allèles A et B sont dominants par rapport à l’allèle O.

Représentez dans un tableau les chromosomes et les allèles qu’ils portent pour des individus de groupes sanguins A, B, AB et O.

Individus de groupe sanguin A :

Paire de chromosomes n°9 n°9
Génotypes A/A A/O
Phénotypes [Groupe A] [Groupe A]

Individus de groupe sanguin B :

Paires de chromosomes n°9 n°9
Génotypes B/B B/O
Phénotypes [Groupe B] [Groupe B]

Individu de groupe AB :

Paire de chromosomes n°9
Génotype A/B
Phénotype [Groupe AB]

Individu de groupe O :

Paire de chromosomes n°9
Génotype O/O
Phénotype [Groupe O]

Combinons ces deux systèmes de groupes sanguins

Sur cette carte de groupe sanguin nous pouvons voir que Caliste est de groupe O+, c’est-à-dire de groupe O et rhésus positif.

Dans un tableau, représentez les chromosomes et toutes les combinaisons d’allèles possibles pour Caliste.

Donnez ensuite les combinaisons d’allèles possibles pour un individu A+.

Les allèles de Caliste :

Paires de chromosomes n°1 n°9 n°1 n°9
Génotypes Rh+/Rh+ O/O Rh+/Rh- O/O
Phénotype [O+] [O+]

Des individus de groupes A+ :

Paires de chromosomes n°1 n°9 n°1 n°9
Génotypes Rh+/Rh+ A/A Rh+/Rh- A/A
Phénotype [A+] [A+]
Paires de chromosomes n°1 n°9 n°1 n°9
Génotypes Rh+/Rh+ A/0 Rh+/Rh- A/O
Phénotype [A+] [A+]

Séance suivante

Un gène, des allèles

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. Bien, qui veut faire le petit rappel ? Juste le dernier cours… Léo ? »

Léo : « Oui monsieur Max. Nous avons vu que chaque caractère héréditaire est porté par une petite portion de chromosome qui porte l’information génétique le codant. On appelle cette petite information génétique gène. »

Max : « Très bien Léo. »

Samuel : « Monsieur Max, j’ai une question ! »

Max : « Nous t’écoutons Samuel. »

Samuel : « C’est à cause du devoir. Dans le devoir il y avait un exercice sur la forme du lobe de l’oreille. C’est un caractère physique présent dans presque toutes les générations de la famille et il est indépendant de l’environnement. C’est donc un caractère héréditaire. J’en déduis qu’il y a un gène pour la forme de l’oreille quelque part sur un chromosome. Mais le lobe de l’oreille peut avoir deux formes. Il peut être libre ou adhérent. Monsieur Max, les gènes existeraient-ils sous plusieurs versions ? »

Dessins d’un lobe d’oreille libre (à gauche) et d’un lobe d’oreille adhérent (à droite).

Max : « Mon petit Samuel… Quel talent ! J’en suis tout tourneboulé… Un élève si brillant qu’il devine par lui même ce que je dois vous faire découvrir ! Léo, ne sois pas jaloux de ce que je viens de dire au sujet de Samuel. Je sais bien que toi aussi tu te posais cette question ! Quel plaisir de faire ce métier ! »

Samuel : « Monsieur Max, je suis ravi de vous voir si extatique mais pourriez-vous répondre à ma question s’il vous plaît ? »

Max : « Je peux ! Mais il n’y a rien à ajouter. Les gènes peuvent effectivement exister sous plusieurs versions appelées allèles du gène. Pour la forme du lobe de l’oreille il existe un gène localisé sur le bras court du chromosome 22. Ce gène existe sous deux formes. L’allèle noté l+ code pour un lobe libre alors que l’allèle l- code pour le lobe adhérent. Vous suivez ? »

Samuel : « Oui monsieur Max. »

Léo : « Mais… Il y a des paires de chromosomes donc deux chromosomes 22. Alors un individu peut avoir deux allèles, un sur chaque chromosome 22. Sont-ils toujours identiques ? »

Max : « Bonne question mon Léo. Non, les allèles ne sont pas forcément les mêmes. »

Samuel : « Alors un individu peut avoir deux fois l’allèle l+, deux fois l’allèle l- ou alors un allèle l+ et un allèle l-. »

Max : « C’est ça ! »

Léo : « S’il a deux fois l’allèle l+ il aura les lobes libres puisqu’il a deux fois l’allèle qui donne les lobes libres. Avec deux allèles l- il aura les lobes adhérents. Mais avec un allèle l+ et un allèle l- ? Comment seront ses lobes ? »

Max : « J’attends vos hypothèses… »

Léo : « On pourrait supposer qu’il a un lobe libre et un lobe adhérent. Mais si on imagine d’autres caractères… Ça peut pas marcher. Le lobe ne peut être à moitié adhérent et à moitié libre… Alors je suppose que ses lobes seront entièrement libres. Comme si l+ gagnait contre l-. »

Max : « Samuel ? »

Samuel : « Je suis d’accord avec le raisonnement de Léo et avec son hypothèse. »

Max : « Et vous avez raison tous les deux ! Effectivement, l’allèle l+ s’exprime seul quand il est en présence de l’allèle l-. On dit que l+ est dominant par rapport à l-. Je vais vous faire une représentation de tout cela. »

Chromosomes n°22 n°22 n°22
Génotype l+/l+ l+/l- l-/l-
Phénotype [Libre] [Libre] [Adhérent]

Samuel : « Monsieur Max, serons-nous obligés de représenter les chromosomes dans le devoir ? Parce que le tableau est suffisant il me semble. »

Max : « Tout dépendra de la consigne Léo. Il faudra bien lire le sujet. »

Samuel : « D’accord monsieur Max. »

Léo : « Monsieur Max, pourriez-vous définir le génotype et le phénotype s’il vous plaît ? »

Max : « Bien sûr Léo. Nous allons le faire dans le cours. Prenez vos cahiers et notez la leçon. »

II. UN GÈNE, DES ALLÈLES.

Un gène est l’information génétique qui code pour un caractère physique. Mais certains de ces caractères existent sous plusieurs formes. Il existe donc plusieurs formes du gène. Elles sont appelées allèles du gène.

Comme un gène est présent sur les deux chromosomes d’une paire, un individu peut porter soit deux fois le même allèle soit 2 allèles différents. Dans ce cas, soit un seul allèle du gène s’exprime et il est dit dominant par rapport à l’autre, soit les deux s’expriment simultanément et ils sont dit codominants.

On appelle phénotype l’ensemble des caractères physiques d’un individu. Le génotype est l’ensemble de ses allèles.

Le phénotype d’un individu dépend de ses caractères héréditaires et de ses caractères acquis. Or les caractères héréditaires dépendent des allèles qu’il possède. Et les caractères acquis dépendent de son environnement. On peut donc dire que le phénotype d’un individu dépend de son génotype et de son environnement.

Max : « Avez-vous des questions ? »

Samuel : « Monsieur Max, je crois avoir compris mais je ne suis pas sûr de moi. Allons-nous faire d’autres exercices ? »

Max : « Lors de la prochaine séance nous allons étudier les groupes sanguins du système ABO. Et je mettrai quelques exercices à votre disposition dans mon blog. »

Samuel : « Merci monsieur Max. »

Max : « Vous avez bien travaillé. Vous pouvez ranger vos affaires et partir. Et n’oubliez pas de réviser 🙂 « 

Séance suivante

Le gène, unité d’information génétique

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. Nous allons continuer notre découverte de la génétique. Savez-vous ce qu’est un gène ? »

Samuel : « Non monsieur Max. »

Léo : « Moi non plus monsieur Max. »

Max : « C’est normal. C’est ce que nous allons étudier. Commençons par ce document… »

Les chromosomes sexuels sont connus depuis 1921 mais leur rôle dans la détermination du sexe n’a été établi que dans les années 1960. L’implication d’une portion du chromosome Y dans la formation des testicules a été mise en évidence grâce à l’analyse du caryotype de femmes XY et d’hommes XX. Sept zones différentes ont été mises en évidence sur le chromosome Y.

Max : « Je vous laisse quelques minutes pour étudier ce document puis vous me direz ce que vous en tirez. »

Quelques minutes plus tard…

Max : « Alors ? Quelqu’un veut prendre la parole ? »

Léo : « Moi ! Je veux bien ! »

Samuel : « Moi aussi ! »

Max : « Malheureusement je ne peux en interroger qu’un seul. Léo, laissons la parole au plus petit d’entre nous. »

Samuel : « En sciences, il faut toujours commencer par décrire ce que l’on voit. Les deux premiers caryotypes montrent les situations normales. En A, l’homme a des testicules et son caryotype comporte un chromosome X et un Y. En B, la femme a des ovaires et son caryotype comporte deux chromosomes X. Léo, veux-tu faire la suite de la description ? « 

Léo : « Oui, merci Samuel. Je te laisserai faire la conclusion. En C nous voyons une femme qui a des ovaires. Mais son caryotype comporte un X et un Y. Mais il manque un petit morceau du chromosome Y. On peut dire qu’il y a délétion du fragment 1. En D, c’est une femme qui a des ovaires. Son caryotype comporte bien deux chromosomes X mais l’un d’entre eux est anormal. Il lui manque une partie de X et à la place, il y a les fragments 6 et 7 d’un chromosome Y. En E, il s’agit d’un homme avec des testicules. Mais il a deux chromosomes X. Toutefois, l’un d’entre eux porte le fragment 1 d’un chromosome Y. »

Max : « Bravo pour cette description. Je précise qu’on appelle translocation le transfert d’une partie de chromosome sur un autre. Samuel, es-tu toujours d’accord pour conclure ? »

Léo : « Bien sûr monsieur Max. Nous pouvons voir que quels que soient les chromosomes sexuels présents, l’individu est un homme avec des testicules si il a le fragment 1 du chromosome Y. Nous pouvons affirmer que c’est ce fragment de chromosome Y qui détermine la présence des testicules. »

Max : « Encore une fois bravo à tous les deux ! Vous venez de découvrir ce qu’est un gène. Il s’agit d’un fragment de chromosome qui code pour un caractère physique. »

Léo : « Monsieur Max, la présence de ce fragment de chromosome permet la fabrication des testicules. Est ce suffisant pour faire un homme ? »

Max : « Bonne question Léo ! Posez vos stylos et écoutez moi. Ce que je vais vous raconter est en dehors du programme. Vous savez déjà que le sexe de l’individu est fixé par les chromosomes sexuels qui sont présents dès la cellule-œuf. On dit que le sexe est déterminé. Toutefois, les organes génitaux ne sont pas tout de suite visibles. Quand ils commencent à se mettre en place ils ne sont pas encore différenciés. A la place d’un pénis et de testicules, ou d’une vulve, il y a un tubercule génital et des crêtes génitales. De même, les gonades ne sont pas différenciées. Ce n’est que vers la 7ème semaine post-coïtum que ces gonades indifférenciées se transforment en testicules sous l’influence du fragment 1 du chromosome Y. Les testicules se mettent ensuite à produire des hormones sexuelles masculines qui vont masculiniser l’individu pendant la vie fœtale, puis plus tard lors de la puberté. En l’absence du fragment 1 du chromosome Y, donc chez les petites filles, les gonades indifférenciées vont se transformer en ovaires à partir de la 8ème semaine. Le corps se féminise lors de la vie fœtale puis la puberté. Pour être complet, enfin… un peu complet… Le tubercule génital deviendra le gland sous l’influence des hormones sexuelles masculines et le clitoris sous l’influence des hormones sexuelles féminines. Le bourrelet génital deviendra la hampe du pénis ou les lèvres. Alors oui mon petit Léo, c’est bien ce gène qui fait qu’on est un homme ou une femme. Du moins génétiquement et physiquement. Avez-vous des questions ? »

Samuel : « Monsieur Max, vous avez bien dit que ce n’est pas au programme. Il n’y aura pas d’interrogation sur ce que vous venez d’expliquer alors. »

Max : « Non Samuel, rassure toi. Pas d’autres questions ? »

Léo : « Non monsieur Max. »

Max : « Alors prenez vos cahier nous allons écrire la leçon. »

L’ORGANISATION DE L’INFORMATION GÉNÉTIQUE

I. LE GÈNE, UNITÉ D’INFORMATION GÉNÉTIQUE.

Un gène est un fragment de chromosome qui code pour un caractère physique.

Un gène occupe toujours la même place sur les deux chromosomes d’une paire.

On compte environ 20 000 gènes dans l’espèce humaine. Chaque paire de chromosomes porte un nombre variable de gènes.

L’ensemble des gènes d’une espèce définit son génome.

Max : « Bien, si vous n’avez pas de questions, vous pouvez ranger vos affaires. Au revoir et travaillez bien. »

Léo et Samuel : « Au revoir monsieur Max. »

Séance suivante

L’origine des séismes – la leçon

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max ! »

Léo : « Monsieur Max, allez-vous rendre les évaluations de la séance précédente ? »

Max : « Oui, à la fin de l’heure. La moyenne de la classe est de 20/20 mais je ne vous donnerai pas vos notes tout de suite 🙂 Aujourd’hui nous allons nous reposer un peu en faisant la leçon qui correspond aux deux dernières activités. »

Léo : « Nous ne faisons pas le petit rappel ? »

Max : « Si. Si tu veux Léo. »

Léo : « Je fais dans l’ordre où ça se passe. Pas dans l’ordre dans lequel on a étudié. Au début il y a des contraintes qui s’exercent sur les roches. Il ne se passe rien jusqu’à ce que ça se casse. La cassure débute en un point appelé foyer et se propage. Ça donne une faille. Au moment de la cassure des ondes sont émises. Elles se propagent dans toutes les directions de l’espace en s’atténuant. En arrivant à la surface de la terre elles provoquent un tremblement de terre. Et voilà ! »

Max : « Très bien Léo. C’est à peu de choses près ce que nous allons noter dans les cahiers. »

Samuel : « Monsieur Max, c’est toujours comme ça en géologie ? On observe des conséquences et on remonte petit à petit au début du phénomène. »

Max : « Oui Samuel. C’est ce qui me plaît dans cette science assez mal aimée. C’est comme une enquête 🙂 On cherche des indices pour raconter une histoire. »

Samuel : « Moi ça me plaît bien 🙂 « 

Max : « J’en suis ravi 🙂 Maintenant ouvrez vos cahiers et notez ! »

IV. L’ORIGINE DES SÉISMES

A tout moment, des contraintes s’exercent sur les roches. Si les contraintes sont croissantes, ces roches se cassent d’un seul coup. La cassure débute en un point appelé foyer. Elle se propage et donne une faille. Au moment de la cassure, des ondes sismiques sont émises. Elles se propagent dans toutes les directions de l’espace en s’atténuant. En arrivant à la surface elles créent un tremblement de terre qui peut avoir de terribles conséquences sur les paysages et les humains.

Les contraintes sont la conséquence de l’énergie interne de la Terre accumulée lors de sa formation.

Max : « Bien. Le chapitre est terminé. Je vous montrerai la répartition mondiale des séismes plus tard. Je vous conseille de bien revoir vos leçons. »

Samuel : « On peut aller en récréation ? »

Max : « Bien sur mes petits. Amusez vous bien 🙂 « 

Samuel et Léo : « Au revoir monsieur Max ! »

Séance suivante

L’origine des ondes sismiques

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Faisons un petit rappel. Léo par exemple. »

Léo : « Nous savons qu’un séisme se manifeste par des vibrations du sol. Elles durent de quelques secondes à quelques minutes et sont plus ou moins étendues. »

Samuel : « Les conséquences peuvent être des dégâts aux constructions humaines, des déformations du paysage, des blessés, des morts et des sans-abris et parfois il y a des tsunamis. »

Léo : « Nous avons aussi découvert que les séismes sont associés à des failles qui sont des cassures de couches de roches en deux blocs qui se déplacent l’un par rapport à l’autre. »

Samuel : « Ces cassures sont provoquées par des contraintes qui s’exercent sur les roches. »

Léo : « Vous nous expliquerez plus tard d’où viennent ces contraintes. »

Samuel : « Nous savons donc que ces contraintes croissantes peuvent provoquer des failles. Mais cela nous explique pas d’où viennent les ondes sismiques. »

Max : « C’est vrai Samuel. C’est ce que je vous propose de découvrir aujourd’hui. Ce sera l’occasion pour moi de vous évaluer sur la démarche de modélisation. Avez-vous des hypothèses ? »

Samuel : « C’est à cause des contraintes ! Quand on appuie trop ça vibre et les vibrations cassent les roches !  »

Léo :  » Mais non ! C’est quand ça casse que les extrémités qui viennent de se former vibrent !  »

Max :  » Vous venez tous les deux de formuler une hypothèse. Mais une seule est correcte. Avez-vous un protocole à me proposer ? »

Samuel : « Nous avons vu qu’on peut casser une roche en exerçant une pression croissante dessus. Nous pourrions refaire ça mais en enregistrant les vibrations. »

Léo : « Sauf que c’est difficile de casser une roche… »

Max : « C’est vrai. Prenons quelque chose de plus facile à faire. Une latte de polystyrène par exemple. Il ne faut pas appuyer très fort pour la casser. Je vous distribue un document qui vous montre le protocole et les résultats obtenus. En suivant les étapes de la démarche de modélisation, vous allez pouvoir vous départager. »

Activité : L’origine des ondes

Max : « Alors ? Avez-vous terminé ? »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Bien. Je ramasse les copies ensuite je vous donne la correction. Nous verrons bien qui avait raison 🙂 « 

Léo : « C’est moi qui avait raison ! C’est bien l’apparition de la faille qui provoque les ondes sismiques ! »

Samuel : « Je le savais. Mais tu avais déjà proposé cette hypothèse ! Il fallait bien que je propose quelque chose moi aussi ! »

Max : « C’est très gentil à toi Samuel. Si vous n’avez pas de question vous pouvez ranger vos affaires et filer vous dégourdir les pattes en recréation. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits 🙂 »

Séance suivante

L’origine des failles

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Mmmm… Qui vais-je interroger pour le petit rappel ? »

Samuel et Léo : « Moi monsieur Max ! Moi ! »

Max : « Quel empressement ! Quel enthousiasme ! Il m’est difficile de choisir. Léo, tu ne m’en voudras pas si j’interroge notre cher Samuel j’espère. »

Léo : « Non monsieur Max. »

Samuel : « Qu’avons-nous vu ? Nous avons vu que lors d’un séisme des ondes sont émises à partir du foyer. Elles se déplacent dans toutes les directions de l’espace et s’atténuent quand la distance au foyer augmente. »

Max : « Très bien Samuel. Léo, as-tu quelque chose à ajouter ? »

Léo : « Quand les ondes arrivent à la surface de la Terre elles provoquent un tremblement de terre qui peut avoir diverses conséquences.« 

Samuel : « Je comprends pourquoi vous nous aviez dit que séisme et tremblement de terre ne sont pas exactement synonymes. Le séisme touche toute la terre alors que le tremblement de terre est un phénomène localisée à la surface au-dessus du foyer. »

Max : « C’est vrai Samuel. Pour le moment nous avons été descriptif. Nous avons dit ce qu’il se passe. Nous allons maintenant tenter de préciser l’origine des séismes. Pour cela il nous faudra résoudre deux problèmes : Quelle est l’origine des failles ? Quelle est l’origine des ondes ? Commençons pas le premier problème. »

Quelle est l’origine des failles ?

Max : « Pour débuter notre réflexion prenons cette règle. Imaginons qu’elle représente une couche de roche. Comment faire apparaître une faille ? »

Léo : « Pour la casser ? Il faut la tordre ! Et crac la règle ! »

Samuel : « Pour faire plus scientifique je dirais qu’il faut exercer une force sur ses extrémités. »

Max : « Comme ça ? (Monsieur Max exerce une force constante sur les extrémités de la règle.) »

Léo : « Il faut appuyer plus fort ! »

Samuel : « Il faut une pression croissante ! »

Max : « Bien. Je viens de vous illustrer une modélisation. En biologie, lorsque nous avons étudié la respiration d’un être vivant, nous avons pris un être vivant pour faire des expériences. En géologie il nous est impossible de prendre une Terre dans le laboratoire pour expérimenter. Nous allons donc prendre quelque chose qui représente la Terre et nous ferons des modèles. Mais la démarche ne change que très peu. »

Léo : « Alors on va faire des démarches de modélisation ? »

Max : « Oui Léo. Commençons maintenant. Je vous distribue un document et nous allons l’étudier ensemble. »

Activité : L’origine des failles

Max : « Bien. Je suppose que vous avez déjà lu le document. »

Léo : « Vous supposez bien monsieur Max 🙂 « 

Max : Alors commençons.Je vous propose de bien rédiger tout de suite. Vous me poserez vos questions après. Si vous en avez 🙂 « 

Max : « Avez-vous des questions ? »

Léo : « Oui ! Ça veut dire qu’il y a des contraintes dans les roches de la Terre ? »

Samuel : « Oui Léo ! C’est à cause de la tectonique des plaques ! »

Max : « Samuel a raison mais je ne suis pas sûr qu’il sache de quoi il parle en évoquant la tectonique des plaques. Nous verrons cela plus tard. Oui Léo, il y a des contraintes qui s’exercent sur les roches. »

Samuel : « Monsieur Max, tout à l’heure, votre modèle avec la règle… »

Max : « Oui Samuel ? »

Samuel : « Quand la règle casse, les morceaux vibrent il me semble. »

Max : « Bonne remarque Samuel 🙂 C’est ce que nous allons étudier la prochaine fois. Pour le moment aller vous aérer un peu. »

Samuel et Léo : « Au revoir monsieur Max. »

Max : « Au revoir mes petits 🙂 « 

Séance suivante