La divergence des plaques

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. « 

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Qui  fait le petit rappel ? »

Samuel et Léo : « Moi ! Moi ! »

Max : « Encore une fois le choix est difficile. Commençons avec toi Samuel. »

Samuel : « Merci monsieur Max. Pour le moment nous savons que la surface de la Terre est découpée en une douzaine de plaques qui se déplacent les unes par rapport aux autres. L’activité géologique (volcans et séismes) se concentre aux limites de ces plaques. Les mouvements peuvent être des divergences, des convergences ou des coulissements. »

Léo : « Les divergences c’est quand les plaques s’écartent. Il y a les rifts et les dorsales océaniques. La convergence c’est quand les plaques se rapprochent comme au niveau des fosses océaniques et des chaînes de montagnes. Les coulissement c’est quand une plaque glisse contre une autre. »

Samuel : « Les plaques sont très grandes mais elles ne sont pas très épaisses. Si j’ai bien compris leur épaisseur correspond à celle de la lithosphère. La lithosphère c’est la couche la plus extérieure de la Terre. Elle est dure et cassante. Son épaisseur est d’une centaine de kilomètres mais vous avez dit que par endroits son épaisseur est nulle. Je ne comprends pas bien. »

Max : « Je vais vous expliquer cela. Pouvez-vous détailler la lithosphère ? »

Léo : « Elle comporte la croûte et le manteau lithosphérique. La limite inférieure de la croûte est le Moho et la limite inférieure de la lithosphère est la LVZ. L’asthénosphère est un tout petit peu moins dure que la lithosphère. Vers 700 km de profondeur on arrive au manteau inférieur. »

Max : « C’est très bien tout ça 🙂 Vous connaissez bien vos leçons. Nous allons pouvoir étudier tout cela. Commençons par les rifts puisque vous n’avez pas bien compris. Actuellement, il y a un grand rift à l’est de l’Afrique. Voyons cela. »

Carte de localisation du rift Est-Africain. C’est une zone de divergence. On y observe des séismes superficiels et des volcans effusifs.

Léo : « Ça fait comme des gradins ou des marches d’escalier de chaque côté d’une plaine. »

Max : « C’est tout à fait ça Léo. La plaine est un fossé d’effondrement. On parle de graben. Voilà ce que cela donne en coupe. »

Coupe schématique d’un rift.

Samuel : « Comment ça se forme ça ? »

Max : « Bonne question. Et si nous modélisions ? J’ai une petite vidéo quelque part… »

Max : « C’est ce qu’il se passe dans la croûte terrestre. »

Léo : « Monsieur Max, si j’ai bien compris… Autrefois l’Amérique du sud et l’Afrique était collés puis ces deux continents se sont séparés. Il y a eu un rift entre les deux ? »

Max : « Tu as bien compris Léo. »

Samuel : « Donc après le rift il y a l’océan ! »

Max : « Oui 🙂 Mais avant de voir les dorsales continuons avec les rifts. Je voulais vous montrer une image mais je ne la trouve pas. Le profil sismique d’un rift… »

Léo : « C’est une image de la profondeur obtenue grâce aux ondes sismiques ? »

Max : « Oui. C’est un peu compliqué mais j’aurais vraiment aimé vous montrer ça. Tant pis. Voici un schéma que l’on peut obtenir à partir de ce genre de document. »

Coupe schématique au niveau d’un rift.

Samuel : « Alors… La lithosphère s’est aminci et la lithosphère est remontée. On voit aussi qu’il y a un réservoir magmatique juste sous le rift. »

Léo : « Ça explique les volcans effusifs. »

Max : « Bravo mes petits. »

Léo : « Nous avons décrit mais ça n’explique pas ce qu’il se passe. »

Samuel : « J’ai une hypothèse ! »

Max : « Je t’écoute Samuel. »

Samuel : « Quand nous avons étudié la coupe de la Terre vous nous avez parlé de la couche D » juste à la limite entre le noyau externe et le manteau. Je me souviens que vous aviez dit que c’est une source de chaleur. Ça chauffe le manteau par en dessous. Quand on chauffe un solide, sa densité diminue et il remonte. Je suppose que c’est ce qu’il se passe avec le manteau. Il remonterait et en arrivant sous la lithosphère il fondrait. »

Léo : « Oui oui oui ! Bravo Samuel ! Ça expliquerait aussi que la croûte se bombe et se fracture ! Ensuite, le manteau repousserait l’asthénosphère sur les côtés ce qui entrainerait la lithosphère ! Et hop ça s’écarte ! »

Max : « Alors là bravo ! Je n’ai rien d’autre à dire. Bravo à tous les deux 🙂 J’ai un peu l’air bête avec ma modélisation. Elle est inutile. »

Léo : « Non ! Je veux voir ! »

Léo : « Oulala ! La bulle qui remonte c’est le manteau ? »

Max : « Oui mais dans la réalité la remontée se fait en dizaines de millions d’années. »

Samuel : « On voit bien que la remontée du manteau repousse la couche du dessus. »

Léo : « En plus, on voit que la couche du dessus s’enfonce sur les bords. »

Samuel : « Forcément ! Si ça s’écarte quelque part il faut bien que ça s’enfonce ailleurs ! »

Léo : « Monsieur Max, si la divergence continue après l’apparition du rift, il doit y avoir de plus en plus de volcans. Ça fait un alignement de volcans effusifs. Ça ressemble à une dorsale ça ! »

Max : « Oui Léo. Les deux bords du rift se sépare et l’espace se comble avec de la roche magmatique. C’est comme cela que se forme la lithosphère océanique. Voici une modélisation. »

Léo : « Je comprends. Quand les continents se sont séparés, l’espace entre le deux se comble de roche volcanique. C’est comme cela que se forme la croûte océanique. »

Samuel : « Et donc après le rift, il y a bien un océan ! »

Max : « Oui mes petits 🙂 Il est d’abord étroit comme c’est le cas pour la mer rouge. »

Carte de la Mer Rouge (source : Wikipédia)

Léo : « Pourquoi dit-on la Mer Rouge si c’est un océan ? »

Max : « Cela ne fait pas longtemps qu’on connaît la nature d’un océan. Un océan a une croûte océanique faite de roche volcanique et il possède ou il a possédé une dorsale. Une mer c’est sur un continent. Je continue. Après, l’océan ne fait que s’élargir. Il ne se passe rien de plus. On peut dater l’âge des fonds océaniques. Voici ce que cela donne pour l’océan Atlantique. »

Max : « Voilà ! Vous savez tout ! Vous pouvez reconstituer ce qu’il s’est passé pour que l’Afrique et l’Amérique du sud trouvent leur place actuelle 🙂 Avant d’aller vous laisser vous aérer en récréation regardons une petite animation. »

Max : « Cette fois vous savez tout ! »

Léo : « Merci monsieur Max ! »

Samuel : « C’était très intéressant 🙂 « 

Max : « Je vous mets un petit cours que vous recopierez pour la prochaine fois et en lien, un document qui résume un peu tout ce que nous avons vu aujourd’hui. Travaillez bien ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

III. LA DIVERGENCE DES PLAQUES.

La divergence commence au sein d’un continent. Le manteau, chauffé par en dessous remonte. Il s’accumule puis s’écoule sur les côtés. L’asthénosphère s’écarte en entraînant la lithosphère. Un rift apparaît. Le manteau fond et donne un magma fluide à l’origine de volcans effusifs. A chaque mouvement un séisme superficiel se produit.

Si la divergence continue une dorsale apparaît et sépare deux plaques lithosphérique. De la lithosphère océanique se met en place. C’est le stade océan étroit illustré actuellement par la Mer Rouge. Puis l’océan s’élargit et on arrive au stade océan Atlantique.

Doc divergence

Séance suivante

Utiliser une clé de détermination (correction)

Identifier trois espèces de chênes

1. Les chênes ont des glands.

2.

a. Fruits = glands

Feuilles lobées

Pétiole des feuilles très court ; gland porté par un très long pédoncule.

C’est un chêne pédonculé.

b. Fruits = glands

Feuille entière

C’est un chêne vert.

c. Fruits = glands

Feuilles lobées

Pétiole des feuilles d’au moins un centimètre ; gland porté par un très court pédoncule.

C’est un chêne sessile.

Identifier des espèces de mésanges

1. Mésange

Poitrine jaune

Dessus de la tête bleue.

C’est une mésange bleue.

2. Mésange

Poitrine jaune

Dessus de la tête noir.

C’est une mésange charbonnière.

3. Mésange

Poitrine beige – brune

C’est une mésange huppée.

La quatrième est la mésange noire.

Réaliser une carte du monde

Bonjour à tous ! En géologie, nous avons parfois besoin de connaissances en géographie. Je vous propose un petit exercice qui va vous permettre de réviser un peu quelques données fondamentales de géographie physiques. Pour cela vous aller réaliser une carte du monde. Voici le fond de carte.

1. En noir, placer les continents ou régions suivants : Amérique du sud ; Amérique du nord ; Groenland ; Europe ; Asie ; Afrique ; Indonésie ; Australie ; Antarctique.

2. En bleu, placer les noms des océans : océan atlantique, océan pacifique, océan indien ; océan arctique ; océan antarctique

3. Représenter en marron, les chaînes de montagnes suivantes (vous pouvez faire plus foncées les montagnes les plus hautes) : Appalaches, Montagnes rocheuses, Cordillère des Andes, Alpes, Atlas, Caucase, Himalaya. N’oubliez d’écrire les noms de ces chaînes de montagnes.

4. Indiquez par des petits triangles les plus hauts sommets de chaque continents. Ce sont : Kilimandjaro, Mont McKinley, Aconcagua, Mont Vinson, Mont Everest, Mont-Blanc.

5. Représentez en bleu les fosses océaniques. Vous pouvez vous aider de ce document.

Carte de localisation des fosses océaniques autour de l’océan pacifique.

6. Représenter en rouge les dorsales océaniques. Là aussi je vous aide un peu 🙂

Carte de localisation des dorsales océaniques.

7. N’oubliez de nommer les lignes continues et pointillées qui figurent sur le fond de carte. Ce sont des lignes imaginaires importantes.

Vous pouvez colorier si vous le voulez mais si vous le faites, faites le proprement. Travaillez bien ! J’aimerais pouvoir mettre vos travaux dans mon site 🙂

Cette jolie carte peut vous aider un peu.

Si vous aimez la géographie vous pourrez vous amuser ici : jeux de géographie.

Séance suivante

Méthodologie de la démarche expérimentale

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Aujourd’hui je vais revenir sur ce que nous avons faits lors des séances précédentes. Ce n’était pas très facile puisque je vous ai fait appliquer deux méthodes que vous avez découvertes l’an dernier. »

Léo : « La démarche expérimentale et le commentaire de graphique. »

Max : « Oui Léo. Cette année vous avez étudié déjà étudié un graphique dans une démarche expérimentale. Je trouve que vous avez bien réussi. »

Samuel : « Merci monsieur Max. »

Max : « Reprenons un peu… Léo, peux-tu nous redonner l’hypothèse de départ ? »

Léo : « Bien sûr que je peux ! Nous avons supposé que la respiration c’est prélever du dioxygène et rejeter du dioxyde de carbone. »

Samuel : « Nous avons découpé cette hypothèse en deux. »

Léo : « Les protocoles des deux expériences se ressemblent beaucoup et vous nous avez donné les résultats sous forme de graphiques à chaque fois. »

Max : « Je n’ai même pas besoin de poser les questions 🙂 Je vais réunir les deux expériences. Ou plutôt, je vais redonner les résultats ensemble pour les interpréter puis formuler la conclusion générale.

Résultats :

Dans le témoin, la quantité de dioxygène reste constante à 20,8%. Avec les escargots la quantité de dioxygène diminue de 20,8 à 20,1 %.

Dans le témoin, la quantité de dioxyde de carbone reste constante à 0%. Avec les escargots, la quantité de dioxyde de carbone augmente de 0 à 3%.

Max : « Que retenez-vous de ces résultats ? »

Léo : « Les témoins servent à être surs de nos résultats. Je ne les retiens pas. »

Samuel : « Il reste deux phrases. J’enlèverais les valeurs. C’est important de les donner dans les résultats mais ce n’est pas vraiment la peine de les retenir. »

Max : « C’est très bien. Je recopie donc mais j’ajoute un peu de couleur… Voilà ! »

Résultats :

Dans le témoin, la quantité de dioxygène reste constante à 20,8%. Avec les escargots la quantité de dioxygène diminue de 20,8 à 20,1 %.

Dans le témoin, la quantité de dioxyde de carbone reste constante à 0%. Avec les escargots, la quantité de dioxyde de carbone augmente de 0 à 3%.

Max : « Quelle est l’étape qui suit les résultats ? »

Léo : « C’est l’interprétation ! »

Samuel : « Il faut expliquer les résultats ! Ça veut dire qu’on doit dire pourquoi la quantité de dioxygène diminue et la quantité de dioxyde de carbone augmente. »

Léo : « Ce n’est pas très difficile. La quantité de dioxygène diminue car les escargots en prélèvent et la quantité de dioxyde de carbone augmente car les escargots en rejettent.

Max : « Exact ! Je reprends ce que vous venez de dire avec un peu de couleur… »

Interprétation :

La quantité de dioxygène diminue car les escargots en prélèvent et la quantité de dioxyde de carbone augmente car les escargots en rejettent.

Léo : « Mais oui ! Je comprends ce que vous êtes en train de faire monsieur Max ! Rholala ! Et ça marche à chaque fois ? »

Max : « Oui Léo 🙂 »

Samuel : « Pourriez-vous m’expliquer s’il vous plaît ? »

Léo : « Samuel ! Voyons ! Regarde bien ! Les résultats c’est ce qu’on voit. Bon, il faut savoir lire un graphique mais il suffit de le regarder et de l’étudier. C’est ce que monsieur Max a noté au début. Ensuite, il a mis en bleu ce qui est vraiment important dans les résultats. »

Samuel : « Jusque là j’ai bien compris. »

Léo : « Ce qui est vraiment important dans les résultats on le recopie dans l’interprétation et on l’explique. »

Samuel : « Ben oui ! »

Léo : « Regarde l’interprétation Samuel ! Observe ce qui n’est pas en bleu et réunit le. »

Samuel : « Ça donne… Il y a les ‘en’ qui m’embêtent. Je reformule et ça donne : les escargots prélèvent du dioxygène et rejettent du dioxyde de carbone. Mais oui ! On a validé l’hypothèse et on a la réponse à notre problème ! »

Max : « Et oui 🙂 Je continue avec les couleurs. »Le plus simple est que je reprenne tout. »

Résultats :

Dans le témoin, la quantité de dioxygène reste constante à 20,8%. Avec les escargots la quantité de dioxygène diminue de 20,8 à 20,1 %.

Dans le témoin, la quantité de dioxyde de carbone reste constante à 0%. Avec les escargots, la quantité de dioxyde de carbone augmente de 0 à 3%.

Interprétation :

La quantité de dioxygène diminue car les escargots prélèvent du dioxygène et la quantité de dioxyde de carbone augmente car les escargots rejettent du dioxyde de carbone.

Conclusion :

Les escargots prélèvent du dioxygène et rejettent du dioxyde de carbone. L’hypothèse est validée. La respiration c’est prélever du dioxygène et rejeter du dioxyde de carbone.

Samuel : « Ça fonctionne pour toutes les démarches expérimentales ? »

Max : « Oui Samuel. »

Samuel : « Alors si on comprends bien comment ça fonctionne on n’a plus jamais besoin de travailler ? »

Max : « Samuel ! Il faut travailler ! Mais… Si vous avez compris cela, il y aura effectivement beaucoup moins de travail à fournir. »

Léo : « Ben oui ! Si on a compris la démarche et qu’on sait commenter un graphique, on trouve tout seul ! Ensuite, il suffit d’apprendre la conclusion et c’est tout. »

Samuel : « Il y a juste une phrase 🙂 « 

Max : « Oui donc il y a quand même du travail. Mais beaucoup moins 🙂 Avez-vous des questions ? »

Samuel : « Non. »

Léo : « Moi non plus. »

Max : « Alors vous pouvez ranger vos affaires et filer et récréation. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Séance suivante

Un commentaire de graphique

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Avez-vous revu la méthode de commentaire de graphique ? »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Je m’en doutais un peu. Mais je veux en avoir le coeur net. Pour cela, il n’y a rien de tel qu’une évaluation. Pour évaluer votre niveau. Vous allez appliquer la méthode à un graphique que vous ne connaissez pas. Je vous le mets dans son contexte. Nous avons formulé une hypothèse sur la respiration. Voulez-vous me la rappeler ? »

Samuel : « Nous avons supposer que lorsqu’un être vivant respire, il prélève du dioxygène et il rejette du dioxyde de carbone. »

Léo : « Nous avons déjà vérifié qu’il prélève du dioxygène avec un oxymètre. »

Max : « Oui. Il nous faut maintenant vérifier qu’il rejette le dioxyde de carbone. Le protocole est le même que pour le dioxygène. Il suffit de changer la sonde de l’appareil et il mesure la quantité de dioxyde de carbone. Les résultats peuvent être donnés sous la forme de graphiques. Les voici. »

Max : « Je suppose que vous connaissez les questions que je vais vous poser. Les voici quand même. »

Max : « Vous avez vingt minutes. Travaillez bien 🙂 « 

Vingt minutes plus tard…

Max : « Je ramasse les copies ! »

Samuel : « J’ai fini il y a longtemps ! »

Léo : « Moi aussi ! C’était trop facile ! »

Max : « Alors je ne suis pas inquiet pour vos notes. Qui veut aller corriger au tableau ? »

Samuel : « Je commence ! »

Léo : « Je ferai la suite. »

1. La grandeur représentée sur l’axe horizontal est le temps.

2. Son unité est la minute.

3. La grandeur représentée sur l’axe vertical est la quantité de dioxyde de carbone.

4. Son unité est le pourcentage.

5. Ces graphiques représentent l’évolution de la quantité de dioxyde de carbone (en %) en fonction du temps (en min) avec et sans escargots.

6. Dans le témoin, la quantité de dioxyde de carbone reste constante à 0% pendant les 6 minutes.

7. Avec les escargots la quantité de dioxyde de carbone passe de 0 à 3% en 6 minutes. Elle augmente en fonction du temps.

8. Avec les escargots la quantité de dioxyde de carbone augmente en fonction du temps car les escargots rejettent du dioxyde de carbone.

Max : « C’est parfait ça ! Dois-je m’attendre à un 20/20 de moyenne ? »

Léo : « Je crois bien 🙂 « 

Samuel : « J’espère que cela n’est pas lassant pour vous monsieur Max. »

Max :  » 🙂 Je m’y habitue assez bien 🙂 Vous pouvez ranger vos affaires et aller vous aérer en récréation. »

Samuel : « Au revoir monsieur Max. »

Samuel et Léo : « Au revoir mes petits. »

Une remarque :

Les résultats :

Les résultats en eux-mêmes sont donnés par l’évolution de la grandeur représentée sur l’axe vertical. Pour donner cette évolution, il faut utiliser un vocabulaire adapté. Une grandeur peut augmenter, diminuer ou rester constante.

Il faut également donner des valeurs.

Je reprends l’exemple de l’évolution de la quantité de dioxyde de carbone dans le témoin en respectant les couleurs que j’ai utilisé ci-dessus.

La quantité de dioxyde de carbone augmente de 0 à 3 %.

Séance suivante

« Tous pareils, tous différents ». La leçon

DES CARACTÈRES PHYSIQUES

« Tous pareils, tous différents. » André Langaney

I. LES CARACTÈRES SPÉCIFIQUES ET LEURS VARIATIONS INDIVIDUELLES.

Une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde.

Tous les individus d’une même espèce ont des caractères physiques communs qu’on ne retrouve pas chez les autres espèces. Ce sont des caractères spécifiques. Un caractère spécifique est un caractère physique qui n’appartient qu’à une espèce.

Les caractères spécifiques humains sont, entre autres : la bipédie exclusive, un cerveau très développé, un langage à double articulation et des empreintes digitales.

Au sein d’une espèce, les individus sont différents en raison des variations individuelles des caractères spécifiques. Tous les êtres humains ont des empreintes digitales, mais elles sont différentes chez chaque être humain.

Max : « Avez-vous des questions ? »

Samuel : « Oui monsieur Max. Pourriez-vous préciser ce que vous entendez par un langage à double articulation ? »

Max : « Oui Samuel. Vous avez remarqué que les langues humaines comportent des mots formés de syllabes. C’est le premier niveau d’articulation. Et ces mots sont organisés en phrases grâce à des règles de grammaire. C’est le second niveau d’articulation. »

Samuel : « Merci monsieur Max. »

Léo : « Il n’y a que chez l’humain qu’on retrouve ce langage ? »

Max : « Les recherches montrent que beaucoup d’animaux ont eux aussi des langages. Ainsi, chez les marmottes, des cris peuvent avertir qu’un prédateur arrive par les airs du côté de la montagne ou que le danger vient du sol du côté de la vallée. Ce langage a donc un vocabulaire assez précis. Chez certains oiseaux, un cri équivalent à un mot change de sens en fonction de sa place dans le chant. Pour être juste, il faudrait dire que le langage humain est plus complexe que celui des autres animaux. »

Léo : « Merci monsieur Max. »

Max : « Avant de terminer, puisqu’il nous reste un peu de temps, je voudrais vous faire lire un texte qui vous permettra de mieux comprendre l’infinie diversité des individus au sein d’une espèce. »

« Dire que les êtres humains sont tous différents ! […] comment est-ce possible ? Imagine que dix personnes se réunissent pour bricoler un masque. Chaque participant arrive avec une partie du visage. Ainsi Claude et Alain ont apporté chacun un nez, Jeanne et Mélanie chacune une bouche, Christian et Pascal chacun deux couleurs d’yeux… […] Avec ce matériel, il est possible de faire toutes sortes de masques différents. Avec seulement deux yeux et deux bouches, le masque peut avoir 4 visages différents. S’ils utilisent en plus les deux mentons, ils disposeront de 8 visages […] Fais le calcul : pour 10 traits, tu trouveras 1024 visages, et pour 30 traits, plus de 1 milliards de visages. »

A. Jacquard et M.-J. Auderset, Moi, je viens d’où ?, Le Seuil, 2002, p. 15

Séance suivante

 

Les caractéristiques de la reproduction sexuée

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max. »

Max : « Bonjour mes petits. Aujourd’hui nous allons essayer de comprendre les caractéristiques de la reproduction sexuée en parcourant un peu l’histoire des sciences. Je vous avais demandé d’étudier un article. L’avez-vous fait ? »

Samuel et Léo : « Oui monsieur Max. »

Max : « Qui veut le résumer ? »

Samuel : « Moi ! Alors… Jusqu’au 18ème siècle la reproduction sexuée était assez mal connue. Deux théories s’opposaient. D’un côté il y avait les ovistes. Selon eux les ovules contiennent déjà un petit individu et la semence du mâle ne fait que ‘réveiller’ l’ovule et déclencher son développement. A l’opposé il y a eu les animalculistes. Ils donnaient le rôle principal aus spermatozoïdes qui; selon eux, contenaient de petits individus. L’ovule se servaient qu’à nourrir cet individu pendant les premiers instants de sa vie. »

Max : « Très bien Samuel. »

Léo : « Je sais bien qu’il ne faut pas juger les personnes du passé avec les connaissances de notre époque mais elles étaient bizarres leurs théories… »

Max : « Il faut se tromper pour progresser Léo. Peux-tu me parler de Lazzaro Spallanzani ? »

Léo : « C’est un italien du 18ème siècle (1729-1799). Il était abbé c’est à dire prêtre catholique mais aussi scientifique. Il était oviste c’est-à-dire qu’il pensait que le mâle n’avait aucun rôle dans la reproduction sexuée et que le bébé était contenu dans l’ovule. C’est étrange parce qu’il a dû voir des accouplements de grenouilles… »

Max : « Il en a vu Léo 🙂 Pour vérifier son hypothèse il se livra à des expériences restées célèbres. Voici la première série. »

Premières expériences de Spallanzani sur la reproduction sexuée.

Léo : « Il a mis des caleçons à des grenouilles mâles 🙂 »

Max : « Oui Léo 🙂 »

Samuel : « Il y a le protocole et les résultats. Nous allons devoir les interpréter je suppose. »

Max : « Tu supposes bien Samuel. Mais avant je vous montre la deuxième série d’expériences. »

Deuxième série d’expériences de Spallanzani sur la reproduction.

Léo : « Là aussi il y a le protocole et le résultats. Je suppose que nous allons sortir une feuille et rédiger une démarche expérimentale 🙂 »

Max : « Absolument Léo 🙂 Allez, au travail. Dans la conclusion n’oubliez pas de dire si l’hypothèse de Spallanzani est validée ou non par ses expériences. Puis vous préciserez ce qu’il faut pour une reproduction sexuée. »

Un peu plus tard…

Léo : « Monsieur Max, nous avons terminé. »

Max : « Alors je ramasse vos copies et vous pouvez filer en récréation pendant que je les corrige. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Séance suivante

La reproduction des plantes à fleurs

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Aujourd’hui nous allons réviser tout ce que nous avons vu sur la reproduction des plantes à fleurs. »

Samuel : « C’est facile 🙂 »

Max : « Pour un élève qui a bien étudié ses leçons c’est effectivement très facile. Veux-tu commencer Samuel ? »

Samuel : « Oui monsieur Max. Je vais commencer par rappeler ce qu’est une fleur. En réalité, la fleur sert à la reproduction des plantes à fleurs car elle porte les organes reproducteurs. Monsieur Max, j’ai fais une dissection de plantes à fleurs chez moi. Puis-je l’utiliser ? »

Max : « Bien sûr Samuel. »

Photographie des éléments d’une fleur de bouton d’or disséquée (Ranunculus repens, Linné 1753)

Max : « Tu as vraiment bien travaillé Samuel. Bravo. »

Samuel : « Merci monsieur Max. De l’extérieur vers l’intérieur il y a les sépales, les pétales, les étamines et le pistil. J’ai découvert que le pistil pouvait être formé de plusieurs carpelles mais c’est quand même un pistil. Les sépales forment le calice. Il sert à protéger la fleur quand elle est en bouton c’est-à-dire qu’elle n’est pas encore ouverte. Les étamines forment la corolle. Les étamines sont nombreuses. Enfin, la plupart du temps parce que parfois il n’y en a que deux. Une étamine est constitué d’un filet et d’une anthère elle-même formé d’un ou deux sacs polliniques. Comme le nom l’indique les sacs polliniques contiennent des tas de grains de pollen. Tout au centre de la fleur il y a le pistil. Il est formé d’un ovaire, d’un style et d’un stigmate. Bon, là aussi c’est très variable. Parfois il y a plusieurs styles, plusieurs stigmates… Chaque espèce de plante à fleur a une fleur particulière. Je les connais pas toutes. Pour en finir avec la fleur il faut dire que dans les ovaires il y a un ou plusieurs ovaires. Voilà pour la fleur. »

Max : « C’est très bien Samuel. Je remets le dessin légendé de la fleur que vous connaissez déjà. »

Dessin d’une fleur coupée en deux.

Max : « Voici d’autres images qui vont vous aider à mieux visualiser. Commençons par des étamines… »

Photographie du centre d’une fleur de lys stargazia. Les étamines sont bien visibles.

Léo : « Ah bah oui ! On voit bien les filets qui portent les sacs polliniques. Le pistil est un peu flou mais on le voit quand même. »

Max : « Une autre photographie… »

Photographie du pistil d’hibiscus entouré par des étamines.

Samuel : « C’est étrange… Le stigmate est entouré par les étamines… Et on dirait que les filets des étamines sont en partie soudés. »

Max : « C’est le cas Samuel. Tu as bien observé. »

Léo : « Il n’y a qu’un seul style mais cinq stigmates arrondis. »

Max : « Et oui 🙂 Comme l’a dit Samuel, chaque plante à fleur à sa fleur particulière. Toutefois dans la famille des Malvacées, la famille de l’hibiscus, les étamines sont nombreuses et soudées par leur filet autour du style.Je vous montre encore quelques photographie. Voici des grains de pollen observés au microscope. »

Photographies de grains de pollen observés au microscope.
Photographie de grains de pollen observés au microscope électronique et colorés artificiellement.

Max : « Bien, maintenant que nous avons révisé la fleur passons à la suite. Léo, je t’écoute. »

Léo : « La première étape de la reproduction des plantes à fleurs, après la mise à fleurs, est la pollinisation. C’est le dépôt d’un grain de pollen sur le stigmate d’une autre fleur. Les principaux agents de pollinisation sont le vent et les insectes. Quand le grain de pollen est posé sur le stigmate d’une fleur de son espèce, il germe et un tube pollinique se développe. »

Max : « Quelques documents pourraient encore vous aider à bien comprendre. »

Le tube pollinique

Léo : « Merci monsieur Max. Le tube pollinique permet au grain de pollen qui est sur le stigmate s’atteindre l’ovule qui est dans l’ovaire. Ensuite il y a fécondation de l’ovule par le grain de pollen. Dois-je faire la suite monsieur Max ? »

Max : « Samuel, veux-tu reprendre ? »

Samuel : « Si Léo est d’accord. »

Léo : « Si tu veux Samuel. »

Samuel : « Alors je prends la suite 🙂 Suite à la fécondation, la fleur se transforme en fruit qui contient des graines. C’est un peu compliqué parce que ce n’est pas toujours pareil. Pour faire simple, le pistil devient le fruit. Les ovules qui sont dans le pistil deviennent les graines qui sont dans le fruit. »

Max : « Je m’occupe des commentaires de documents. Commençons par la formation d’une cerise puisque vous avez légendé la fleur de cerisier. Regardez ce qu’il se passe. »

De la fleur à la cerise

Max : « Suite à la fécondation les sépales, les pétales, les étamines se détachent et tombent. Le style et le stigmates tombent eux-aussi. La paroi de l’ovaire gonfle et se charge en eau et en sucres. Pendant ce temps, l’ovule fécondé devient une graine. L’ovule qui était dans l’ovaire devient la graine qui était dans le fruit. Passons à la formation d’une pomme. »

De la fleur à la pomme.

Max : « Comme vous le voyez, les pétales et les étamines tombent là aussi. »

Léo : « Mais pas les sépales ! Il en reste un peu sur la pomme ! »

Max : « Oui Léo 🙂 »

Samuel : « Et le pédoncule se transforme. Il devient un peu dire. C’est l’espèce de tige qu’il y a sur la pomme. »

Max : « Ce n’est pas une espèce de tige Samuel. C’est le pédoncule. Il change d’aspect et de nom. De pédoncule floral il passe à pédoncule du fruit. »

Léo : « Et encore une fois les ovules deviennent des graines. »

Samuel : « Hé ! Mais alors quand il y a plusieurs graines c’est qu’il y avait plusieurs ovules ! Il y a des pépins dans la pomme. Je ne sais pas combien. Je dirais 8 ou 10. Ça veut dire qu’il y avait 8 ou 10 ovules ! »

Léo : « Alors dans une fleur de cerisier il n’y avait qu’un seul ovule puisqu’il n’y a qu’une seule graine dans la cerise. »

Samuel : « Léo, tu imagines le nombre d’ovules qu’il y avait dans une fleur de kiwi ? »

Léo : « Rholala oui ! Il devait y en avoir beaucoup ! »

Max : « Effectivement. Cependant le kiwi est un cas un peu particulier. La plante sur laquelle il se développe porte des fleurs mâles ou des fleurs femelles. Les fleurs mâles ont des étamines mais pas de pistil. Les fleurs femelles ont un pistil mais aucun étamine. »

Léo : « D’accord. Merci monsieur Max. »

Max : « Léo, pour terminer, accepterais-tu de nous parler de la graine ? »

Léo : « Bien sûr. Une graine contient un ou deux cotylédons. Ce sont des réserves nutritives qui serviront à la plantule pour se développer. La plantule est un bébé plante qui se trouve entre les cotylédons ou contre le cotylédons. L’ensemble est enfermé et protégé par le tégument. Si vous voulez je peux aller au tableau faire un dessin rapide. »

Max : « Si tu veux Léo. »

Dessin d’une graine de haricot coupée en deux.

Max : « Bravo Léo. »

Samuel : « La reproduction ça sert à faire des bébés. Et dans la graine il y a un bébé plante. Donc nous avons terminé. »

Max : « C’est exact Samuel. Si je reprends les principales étapes de la reproduction des plantes à fleurs j’énonce : 1. La mise à fleur 2. La pollinisation 3. La germination du grain de pollen et la fécondation 4. La transformation de la fleur en fruit qui contient une ou plusieurs graines. Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max. »

Max : « Alors filez vous amuser en récréation mais n’oubliez pas de réviser pour la prochaine fois. »

Samuel et Léo : « Oui monsieur Max ! Au revoir monsieur Max ! »

Max : « Au revoir mes petits 🙂 »

Séance suivante

TP : Observation de stomates au microscope optique

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Aujourd’hui vous allez utiliser le microscope optique. »

Léo : « Chouette alors ! »

Samuel : « Qu’allons-nous observer monsieur Max ? »

Max : « Vous allez observer les stomates de plantes. Le plus simple est d’utiliser des feuilles de poireau. Je vous donne le protocole à suivre. J’espère que vous avez bien révisé les méthodes que je vous ai indiqué. »

Léo : « Bien sûr monsieur Max ! »

Samuel : « Oups ! J’ai oublié… Je devrais me souvenir. Ce n’est pas très difficile de réaliser une préparation microscopique. Utiliser le microscope non plus. »

Max : « Nous verrons Samuel. Nous verrons 🙂 Votre objectif est de réussir une belle observation pour pouvoir en tirer un dessin. N’oubliez pas qu’il faut garder un peu de temps en fin de séance pour ranger votre paillasse. »

Samuel : « Oui monsieur Max ! »

Max : « Voici ce que vous obtiendriez avec l’épiderme de la face inférieure d’une fronde de polypode. »

Photographie d’épiderme de fronde de polypode observée au microscope (x200)

Photographie d’épiderme de fronde de polypode observée au microscope (x600)
Exemple de photographie et du dessin correspondant.

Max : « Pour légender le dessin vous utiliserez les mots suivants : cellule de garde, ostiole, cellule épidermique, paroi, chloroplastes. N’oublier ni le titre de votre dessin ni le grossissement. Au travail mes petits ! Au travail ! »

Séance suivante

TP Stomates

La nutrition des végétaux

Bonjour à tous ! Je vous ai déjà expliqué que les êtres vivants ne font que deux choses : se nourrir et se reproduire. Ce sont les fonctions de nutrition et de reproduction. Comme êtres vivants vous connaissez les animaux, les végétaux, les champignons et les bactéries. Nous ne parlerons ni des champignons ni des bactéries. Restent les animaux et les végétaux. Vu le titre de l’article vous avez compris que dans ce chapitre nous allons étudier la nutrition des végétaux 🙂 Nous avons commencé en 6ème. Ce fût l’occasion de découvrir la démarche expérimentale. Elle nous avait servi à déterminer les besoins nutritifs des végétaux. Je ne peux que vous inciter à aller relire les articles. Ils sont ici :

Les besoins nutritifs des végétaux (1)

Nous savons donc que les végétaux se nourrissent d’eau, de sels minéraux et de dioxyde de carbone en présence de lumière.

L’étude de la respiration a été l’occasion de découvrir les stomates. Vous en souvenez-vous ? Ce sont des structures présentes sur la face inférieure des feuilles et par lesquels se font les échanges gazeux. Le dioxyde de carbone passe par là. Le problème de l’absorption du dioxyde de carbone est donc réglé. Il se fait par les feuilles. Il reste un problème : Comment l’eau et des sels minéraux et les sels minéraux sont-ils prélever ? Nous allons l’étudier.

Comme chez tous les êtres vivants, les cellules des végétaux doivent produire de l’énergie. Elles le font à partir de glucose et de dioxygène. Cela pose un nouveau problème. D’où vient le glucose utilisé par les cellules végétales pour produire de l’énergie ?

D’autres problèmes se posent encore. Nous les découvrirons au fur et à mesure de notre avancée dans le chapitre.

Pour le moment, il est temps de commencer. C’est parti !

Séance suivante