L’origine des produits volcaniques (correction)

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Nous allons corriger l’activité que vous avez faite lors de la séance précédente. »

Léo : « Vous allez rendre les copies ? »

Max : « A la fin de l’heure. Je ne vous donne pas vos notes mais la moyenne de classe est encore de 20/20 🙂 J’affiche le sujet au tableau. »Max : « Nous allons relire chaque paragraphe en essayant de trouver les idées ou les mots importants. Je vais les surligner puisque beaucoup d’élèves aiment surligner. Certains aiment tellement cela qu’ils surlignent presque tout le texte. »

Léo : « Mais ça sert à rien de tout surligner ! Il ne faut que quelques mots ! »

Samuel : « Ben oui ! Une ou deux phrases ! »

Max : « Oui 🙂 Une ou deux phrase au maximum… Léo, peux-tu lire le premier paragraphe s’il te plaît ? Et tu souligneras les idées ou mots importants. »

Léo : « ‘Vers 100 km de profondeur, il règne dans le sous-sol une pression et une température beaucoup plus élevées qu’à la surface (plusieurs milliers d’atmosphères et 1200°C). Dans ces conditions certaines roches fondent, mais pas complètement : c’est la fusion partielle. Celle-ci donne naissance à un matériau liquide contenant des solides et des gaz : c’est le magma. Il est différent selon la nature des roches en fusion. La fusion partielle est spécifique de la formation d’un magma. Aucun corps en surface ne peut subir de phénomène.‘ »

Samuel : « Là, on apprend que le magma se forme par fusion partielle des roches. »

Léo : « Et le magma est un matériau liquide contenant des liquides et des gaz. »

Samuel : « On a déjà répondu aux deux premières questions 🙂 »

Max : « Vous remarquerez que ces idées importantes sont celles qui figurent sur le schéma : fusion partielle des roches. Le magma est représenté même si ce n’est pas écrit. Samuel, paragraphe suivant s’il te plaît. »

Samuel : « ‘Les gouttelettes de magma sont moins denses que les roches qui les entourent. Elles remontent lentement et se rassemblent. Quand elles atteignent des roches qui ont la même densité qu’elles, elles arrêtent leur remontée et s’accumulent. Il se forme un réservoir magmatique. Le magma s’y accumule et y séjourne parfois pendant plusieurs siècles.' »

Léo : « Là, on apprend que le magma remonte parce qu’il est moins dense que les roches qui sont autour. »

Samuel : « Comme un ballon qu’on pousse au fond de l’eau. Il va remonter. »

Léo : « Et on a déjà vu que la remontée provoque des microséismes. Mais ça c’est pas dans ce texte. »

Samuel : « Si ! Mais à la fin ! »

Léo : « Et puis quand le magma arrive où les roches ont la même densité que lui, il s’arrête et forme le réservoir magmatique. »

Max : « Oui. Vous avez bien compris. Je ne devrais pas vous le dire mais dans certaines copies j’ai lu que le magma formait un réservoir magnétique 🙂 « 

Samuel et Léo : « Noooon 🙂 « 

Max : « Si si 🙂 Lisons la suite. Léo s’il te plaît. »

Léo : « ‘En se refroidissant, le magma évolue. Les gaz se séparent de la lave. Ils forment des bulles qui remontent et entraînent la lave vers le haut. Une éruption volcanique correspond donc à la reprise de la remontée du magma depuis le réservoir magmatique jusqu’à la surface à cause des bulles de gaz qui remontent. Une fois à la surface et libéré de ses gaz, le magma donne naissance à la lave. »

Samuel : « Réponses aux questions 4 et 5 ! En se refroidissant les gaz sortent du magma et ça donne de la lave et des bulles. »

Léo : « Comme quand on ouvre une bouteille de soda. Les gaz dissous deviennent des bulles et si on avait agité avant, les gaz sortent fort et entraînent le liquide hors de la bouteille. Pschitt le soda ! »

Samuel : « C’est la réponse à la question 5. Les bulles remontent et entraînent la lave vers le haut. Et ça fait l’éruption ! »

Léo : « Pschitt le volcan ! »

Max : « Oui mes petits. La suite Samuel. »

Samuel : « ‘En remontant, la lave doit forcer le passage en fracturant les roches. Il se produit de petits séismes. En s’accumulant sous le volcan, la lave et les gaz peuvent faire gonfler les parois du volcan. Et on assiste parfois à des émissions de gaz qui montrent que le volcan est actif et qu’une éruption pourrait se produire bientôt.’ J’ai mis en évidence les trois indices qui peuvent faire penser qu’une éruption volcanique va peut-être se produire. »

Max : « C’est bien Samuel. Nous allons rédiger les réponses puis nous ferons le résumé qui nous servira de leçon. Prenez vos cahiers et notez. »

II. L’ORIGINE DES PRODUITS VOLCANIQUES.

En profondeur les conditions sont telles que les roches fondent en partie. Cette fusion partielle des roches donne naissance à un magma qui est un mélange de liquide, solide et gaz. Moins dense que les roches qui l’entourent, le magma remonte. Plus haut, il s’arrête et s’accumule dans un réservoir magmatique. Là il refroidit doucement. Les gaz se séparent de la lave. Des bulles cherchent à remonter et entraînent la lave vers le haut. Quand les gaz et la lave arrivent à la surface il y a éruption.

Des signaux annoncent l’éruption volcanique : des microséismes, le gonflement du volcan et des émissions de gaz.

Magma : le magma est un mélange de roches fondues, de solides et de gaz.

Max : « Si vous n’avez pas de question, vous pouvez ranger vos affaires et filer en récréation. »

Samuel et Léo : « Pas de question ! »

Max : « Alors amusez vous bien. »

Samuel et Léo : « Merci monsieur Max. Au revoir monsieur Max ! »

Séance suivante

L’origine des produits volcaniques

Max : « Bonjour à tous ! enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour bonjour 🙂 Qui veut faire le petit rappel ? »

Samuel : « Moi monsieur Max. Nous avons vu qu’une éruption volcanique correspond à l’émission de produits volcaniques à partir d’un centre éruptif. »

Léo : « Les produits volcaniques sont les gaz, des cendres et de la lave. »

Samuel : « Il existe deux grands types de volcans : les effusifs qui émettent de la lave fluide très chaude et les explosifs qui émettent surtout des gaz et des cendres et un peu de lave visqueuse. »

Léo : « Et la différence entre les deux types de volcans vient de la viscosité de la lave. »

Max : « Bien. C’est suffisant. Inutile de redonner toutes nos connaissances. Vous allez aujourd’hui travailler en autonomie pour découvrir d’où viennent les produits volcaniques. »

Léo : « Nous savons déjà qu’ils viennent d’en dessous du volcan et qu’en remontant la lave produit des petits séismes. »

Max : « Oui, vous le savez déjà. Mais vous allez découvrir bien d’autres choses 🙂 »

Léo : « Monsieur Max, vous avez dit qu’on allait travailler en autonomie. Ce sera noté ? »

Max : « Oui Léo. Mais il suffit de savoir lire et écrire pour réussir cette activité. »

Samuel : « Alors on devrait y arriver 🙂 « Max : « Quelques conseils. Les réponses doivent être courtes. Il faut trouver la bonne réponse dans le texte et reformuler pour répondre en une seule phrase. Il est hors de question de recopier chaque paragraphe à chaque question. Et puis lisez  bien le texte avant de lire les questions. Il faut le lire, le relire, le lire encore. Si vous l’avez bien lu, vous aurez les réponses en lisant les questions. Voilà 🙂 Bon travail. »

Samuel : « Monsieur Max, avons-nous toute l’heure ? »

Max : « Ce travail pourrait se faire en 20 minutes mais je vous laisse toute l’heure. Il faut penser aux élèves les plus lents… »

A la fin de l’heure…

Max : « Mes petits il est temps de rendre vos copies. »

Samuel et Léo : « Voilà monsieur Max ! »

Max : « Vous pouvez ranger vos affaires et partir. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Activité Les phénomènes à l’origine d’une éruption 2

Séance suivante

Modélisons cela… (Correction)

Bonjour à tous ! J’ai bien reçu vos devoirs et il me faut maintenant vous donner la correction. Je vais en profiter pour faire quelques remarques sur la démarche de modélisation. Commençons…

Observation : Nous savons qu’il existe deux types de volcans : les volcans effusifs et les volcans explosifs.

Problème : Comment expliquer la différence de dynamisme éruptif entre ces deux types de volcans ?

Hypothèse : On suppose que la différence de dynamisme s’explique par la différence de viscosité des laves.

Modèle :

Protocole : Commençons par modéliser les éruptions effusives. Dans un tube en U on met de la sauce tomate qui représente la lave fluide et un peu d’eau. Les gaz volcaniques sont représentés par les gaz produits par un cachet effervescent. Puis on bouche le côté où se trouve le cachet. Pour modéliser les éruptions explosives on prend un second tube en U dans lequel on place de la purée qui représente la lave visqueuse et un peu d’eau. Puis on bouche des deux côtés.

Résultats : Dans le premier tube en U, les gaz du cachet effervescent peuvent remonter facilement et la sauce tomate remonte et s’écoule calmement le long du tube. Dans le second tube, les gaz du cachet effervescent ont du mal à s’échapper. Ils s’accumulent puis poussent la purée qui éjecte le bouchon. Puis la purée sort verticalement.

Interprétation : Avec un produit fluide les gaz s’échappent facilement. Les bulles remontent le liquide s’écoule calmement. Avec un produit visqueux les gaz ont du mal à s’échapper. ils s’accumulent et finissent par s’échapper brutalement en provoquant une explosion.

Conclusion : Quand la lave est fluide les gaz s’échappent facilement. Les bulles remontent et entraînent calmement la lave qui forme des coulées. Quand la lave est visqueuse les gaz n’arrivent pas à s’échapper. Ils s’accumulent puis sont libérés de façon explosive. Une nuée ardente apparaît puis les gaz continuent à s’échapper en entraînant des cendres sous forme de panache éruptif. Puis il arrive que la lave forme une aiguille de lave. La différence de dynamisme entre les volcans gris et les volcans rouges vient de la différence de viscosité de la lave.

Voilà ! Ce n’était pas bien difficile 🙂

J’ai parlé de remarques. Il y en a une qui me vient là, tout de suite. Vous avez peut-être remarqué que les résultats décrivent ce qu’il se passe dans le modèle. Ici, dans les résultats, on parle de sauce tomate, de purée… Dans l’interprétation on explique ce qu’il se passe dans la modèle. Puis, dans la conclusion, on revient à la réalité. On ne parle plus de la sauce tomate mais de la lave fluide. De même on oublie la purée et on décrit le comportement de la lave visqueuse. C’est plus facile que dans la démarche expérimentale. Je répète : dans l’interprétation on parle du modèle alors que dans la conclusion on revient à la réalité.

Modélisons cela

Séance suivante

Modélisons cela…

Max : « Bonjour à tous ! enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Samuel, peux-tu faire le petit rappel ? »

Samuel : « Je peux monsieur Max ! Nous avons vu qu’il existe deux principaux types de volcans. Les volcans explosifs, dits volcans gris, explosent. Ils libérent brutalement de grandes quantités de gaz et de cendres sous forme de nuées ardentes et de panaches éruptifs. Ils émettent également un peu de lave visqueuse, qui coule mal. »

Max : « Merci Samuel. Léo va prendre la suite. »

Léo : « Oui monsieur Max. Il y a aussi les volcans effusifs dits volcans rouges. Ils émettent de grandes quantités de lave fluide sous forme de fontaines de lave et de coulées de laves. Il y a aussi des gaz et des cendres mais moins. »

Max : « Très bien ! Bravo à tous les deux ! Encore un fois vous connaissez parfaitement vos leçons. »

Léo : « Monsieur Max, j’ai une question ! Comment expliquer la différence entre ces deux types de volcans ?« 

Max : « C’est une très bonne question Léo. Mais vous connaissez déjà la réponse. Elle est dans la leçon que vous avez si bien récitée. »

Samuel : « J’ai une hypothèse ! Et si c’était à cause de la viscosité de la lave ? Si la lave est fluide les gaz peuvent remonter facilement et l’éruption est calme.  On dit qu’elle est effusive. Alors que si la lave est très visqueuse les gaz ont du mal à sortir. Ils s’accumulent et quand il y en a beaucoup ils sortent de façon brutale et ça explose. Boum le volcan ! »

Max : « Samuel, tu viens de proposer une hypothèse et ses conséquences vérifiables. Comment pourrions-nous vérifier cette hypothèse ? »

Samuel et Léo : « En faisant un modèle ! »

Max : « Oui, un modèle en deux parties. L’une pour les éruptions effusives, l’autre pour les éruptions explosives. Je vous montre ça. Commençons par le modèle éruption effusive… »

La vidéo originale

Léo : « Rholala ! On voit bien comme ça ! »

Max : « N’oubliez pas que lorsque nous faisons un modèle il faut dire à quoi correspondent les éléments du modèle dans la réalité. »

Samuel : « La sauce tomate représente la lave fluide et les gaz produits par le cachet effervescent représentent les gaz volcaniques. »

Max : « Très bien Samuel. Passons au modèle suivant… »

La vidéo originale

Samuel : « Boum le modèle ! »

Léo : « Là c’est de la purée qui représente de la lave visqueuse. Les gaz du cachet représentent encore les gaz volcaniques. »

Max : « Oui Léo. Bien, maintenant vous allez prendre une feuille, la présenter comme pour une évaluation puis vous rédigerez la démarche de modélisation que nous venons de suivre. N’oubliez pas d’indiquer, dans le protocole, à quoi correspondent les différents éléments de nos modèles dans la réalité. Et vous aurez la réponse à la question de Léo. Au travail ! »

Séance suivante

Deux types de volcans

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Avez-vous bien révisé ? »

Samuel : « Oui monsieur Max ! »

Max : « Alors la séance d’aujourd’hui vous paraîtra facile. Nous allons faire la leçon puis je vous donnerai un petit exercice. Prenez vos cahiers et notez. »

LES VOLCANS

I. DEUX TYPES DE VOLCANS.

1. Les volcans explosifs.

Les volcans gris sont des volcans explosifs. Ils émettent de grandes quantités de gaz et de cendres sous forme de nuées ardentes et de panaches éruptifs. Ils peuvent aussi émettre un peu de lave visqueuse.

Une nuée ardente est un nuage de gaz et de cendres qui dévale les pentes du volcan à haute vitesse. Au départ, une nuée ardente peut dépasser 500 km/h et 500°C.

Un panache éruptif est constitué de cendres projetées verticalement par des gaz à haute vitesse.

2. Les volcans effusifs.

Ce sont les volcans rouges ou effusifs. Ils émettent de grandes quantités de lave fluide sous forme de fontaines de lave et de coulées de lave fluide.

Une éruption volcanique est donc l’émission de produits volcaniques (lave, gaz, cendres) à partir d’un centre éruptif. Les éruptions sont toujours précédées par de petits séismes.

Max : « Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max. »

Max : « Alors rangez vos cahiers. Je vais vous distribuer le petit exercice. »

Couleur dominante

Mode d’émission

Produits émis

Température

Fluidité

Roches

Basalte Rhyolite

Dynamisme

Samuel : « Monsieur Max, devons-nous remplir le tableau ? »

Max : « Oui Samuel. »

Samuel : « D’accord monsieur Max. »

Samuel et Léo : « Fini ! »

Couleur dominante Rouge Gris
Produits émis Lave, gaz et cendres Gaz et cendres, lave
Mode d’émission Fontaine de lave et coulées de lave Nuées ardentes et panaches de cendres
Température 1100°C 600°C
Fluidité Fluide Visqueux
Dynamisme Effusif Explosif
Roches Basalte Rhyolite

Max : « Bravo mes petits ! Avant de terminer je vous distribue un document qui reprend tout cela. Le voici… »

Si vous n’avez pas de questions vous pouvez aller vous dégourdir les pattes en récréation. »

Samuel et Léo : « Au revoir monsieur Max ! »

Séance suivante

LES SÉISMES

Dans ce premier chapitre nous allons étudier les séismes ou tremblements de terre. Pour ce faire nous allons nous poser quelques questions et tenter d’y répondre. Et, comme vous le verrez, une réponse engendre une nouvelle question 🙂 Nous commencerons par observer les effets des séismes puis, petit à petit, nous remonterons à leur cause. Nous pourrons alors expliquer ce qu’il se passe lors d’un séisme.

Quelles sont les manifestations et les conséquences des séismes ?

I. MANIFESTATIONS ET CONSÉQUENCES DES SÉISMES.

Comment localiser un séisme ?

II.  LA LOCALISATION DES SÉISMES.

1. L’épicentre d’un séisme.

2. Le foyer d’un séisme.

Qu’est ce qu’une faille ?

III. LES FAILLES.

IV. L’ORIGINE DES SÉISMES.

Comment expliquer l’apparition d’une faille ?

1. L’origine des failles.

Comment expliquer l’apparition des ondes sismiques ?

2. L’origine des ondes sismiques.

Comment les séismes sont-ils répartis à la surface de la terre ?

V. LA RÉPARTITION MONDIALE DES SÉISMES.

Commencer le chapitre

LE VOLCANISME

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. Et puis dépêchez vous. Je voudrais vous montrer quelques films pour vous présenter le volcanisme. »

Samuel et Léo : « Bonjour monsieur Max ! »

Léo : « On va étudier le volcanisme ? Chouette alors ! »

Samuel : « Et on va regarder des vidéos ! »

Max : « Oui, quelques unes. Je compte sur vous pour être sages ! »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Alors commençons… »

Éruption du Mont Saint-Helens (Maurice et Katia Kraft)

Éruption du Mont Saint-Helens (version courte)

Léo : « Rholala ! La montagne a explosé d’un coup ! Boum la montagne ! »

Max :  » 🙂 Léo, tu devrais parler du volcan. »

Léo : « Oui oui ! Pardon monsieur Max ! Le volcan a explosé d’un coup ! Boum le volcan ! »

Samuel : « Moi je croyais qu’il y avait de la lave qui sortait d’un volcan. »

Léo : « Là il y en avait pas ! C’était… C’était comme des cendres qui formaient des nuages. »

Samuel : « Des nuages qui allaient très vite ! Vers le bas ou vers le haut. »

Léo : « Les cendres devaient être poussées par des gaz ! C’est pour ça que ça a explosé ! Il y avait plein de gaz dans le volcan et puis ils ont été libérés d’un coup quand ça a explosé et les cendres ont été projetées à toute vitesse ! »

Max : « Vous avez tout compris à ce premier type de volcan. Ce sont les volcans gris ou volcans explosifs. Regardons un peu mieux… »

Une nuée ardente

Léo : « Rhoooo ! »

Samuel : « C’est un nuage de cendres qui dévale la pente à toute vitesse ! »

Max : « C’est ce que les géologues appellent une nuée ardente. Une nuée ardente est un nuage de gaz et de cendres qui dévale les pentes du volcan à haute vitesse. Au départ, une nuée ardente peut dépasser 500 km/h et 500°C. »

Samuel : « Mais c’est très dangereux alors ! »

Max : « Oui Samuel, c’est extrêmement dangereux. Continuons… »

Un panache éruptif

Samuel : « Encore des cendres projetées à toute vitesse ! »

Max : « Oui, cette fois elles sont projetées verticalement et, en général, cela dure plusieurs jours, voire plusieurs semaines. C’est un panache éruptif. Un panache éruptif est constitué de cendres projetées verticalement par des gaz à haute vitesse. »

Léo : « Monsieur Max, jusqu’à quelle hauteur peuvent aller les cendres ? »

Max : « Pour le Saint Helens, elles ont atteint environ 20 km. Pour le Krakatoa elles ont atteint 85 km. »

Samuel : « Ah oui, quand même… »

Max : « Évidemment, elles se dispersent dans l’atmosphère petit à petit bien qu’une grande partie retombe rapidement au sol. Les cendres dispersées dans l’atmosphère font écran aux rayons du soleil. L’éruption du Pinatubo en 1991 a ainsi provoqué une baisse de la température moyenne sur terre de plus de 1°C pendant deux à trois ans. »

Samuel : « Mais il n’y a jamais de lave dans ces volcans gris ? »

Max : « Si, un peu. Elle coule très mal. On dit qu’elle est visqueuse. Quand elle sort du volcan elle peut former une aiguille de lave qui grandit de quelques centimètres par jour et qui finit pas s’effondrer. Voici un exemple à la montagne Pelée en 1903. »

Léo : « C’est de la lave qui sort comme ça ? »

Max : « Oui Léo. Je répète qu’elle est très visqueuse. On peut dire très pâteuse si vous voulez. »

Samuel : « Je ne voyais pas les volcans comme ça moi… »

Max : « Je vous ai donc appris quelque chose… Qui veut résumer ce que nous venons de voir ? »

Samuel et Léo : « Moi monsieur Max ! Moi ! »

Max :  » 🙂 Samuel, nous t’écoutons. »

Samuel : « Les volcans gris sont des volcans explosifs. Ils émettent de grandes quantités de gaz et de cendres sous forme de nuées ardentes et de panaches éruptifs. Ils peuvent aussi émettre un peu de lave visqueuse.« 

Max : « Très bien Samuel. Passons au second type de volcan… »

Éruption du Piton de la Fournaise, Île de la Réunion (France)

Éruption du Piton de la Fournaise, Île de la Réunion (France), le 15 septembre 2018.

Samuel : « Là ça ressemble plus à ce que j’imaginais pour un volcan. »

Léo : « Oui, il y a de la lave qui sort du cratère et qui forme de grandes coulées de lave. »

Samuel : « Mais je ne savais pas que ça bouillonnait comme ça dans le cratère. »

Max : « Ce sont les fontaines de lave. »

Léo : « C’est le gaz qui sort et qui éjecte des morceaux de lave monsieur Max ? »

Max : « Oui Léo mais nous parlerons plutôt de lambeaux de lave. Voulez-vous voir une autre fontaine de lave ? »

Samuel et Léo : « Oui monsieur Max ! »

Une fontaine de lave au Kilauea (Hawaï, USA) le 18 Mai 2018

Samuel : « C’est encore les gaz qui remontent et qui projettent les lambeaux de lave. »

Léo : « Et en remontant, les gaz entraînent la lave. Et ça fait des coulées de lave. »

Max : « Oui Léo. Je peux encore vous en montrer… »

Éruption du Kilauea (Hawaï, USA) le 6 juin 2018

Max : « Comme vous pouvez le voir, la lave coule vite. On dit qu’elle est fluide. En se refroidissant, elle commence à se solidifier et sa couleur s’assombrit. Elle coule aussi moins vite. Voici une vidéo qui montre une coulée de lave à deux kilomètres de son point de sortie. »

Éruption du Kilauea (Hawaï, USA) le 9 décembre 2011.

Léo : « Il y a comme une croûte durcie sur la coulée. »

Max : « Oui Léo. Pourrais-tu résumer ce que nous venons de voir avec ce second type de volcans ? Je précise que ce sont des volcans effusifs. »

Léo : « Oui monsieur Max. Ce sont les volcans rouges ou effusifs. Ils émettent de grandes quantités de lave fluide sous forme de fontaines de lave et de coulées de lave.« 

Max : « Très bien Léo. Nous reprendrons tout cela sous forme de leçon lors de la prochaine séance. Pour le moment je voudrais vous montrer un dernier film… »

Léo : « Hé ! Mais c’est sous l’eau ! »

Samuel : « Rholala ! »

Max : « Et oui 🙂 La lave se solidifie au contact de l’eau mais à l’intérieur elle est encore liquide et avance. Elle perce la croûte et avance mais sa surface se solidifie presque instantanément… Bien, ce sera suffisant pour aujourd’hui. Vous pouvez ranger vos affaires. Et revoyez bien ces films pour la prochaine fois ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits… »

Séance suivante

Les reliefs terrestres

Max : « Bien, nous sommes là pour étudier brièvement les reliefs terrestres. Commençons par une carte de la surface terrestre… »

Léo : « Attendez monsieur Max ! Pouvez-vous nous dire ce qu’est un relief ? »

Max : « Bien sûr Léo. En géographie le mot relief désigne l’ensemble des irrégularités (en creux ou en saillie) qui caractérisent la surface de la Terre. »

Léo : « Merci monsieur Max. »

Samuel : « Il y a les plaines et les montagnes ! »

Max : « Oui Samuel, mais pas seulement. Nous allons étudier cela. Regardez cette carte. »

Carte des reliefs terrestres

Léo : « Oulala ! On voit le fond des océans ! »

Samuel : « C’est comme s’il y avait pas d’eau dans les océans ! »

Max : « Oui, j’aime beaucoup cette carte. La réalisation de ce genre de carte n’est possible que depuis les années 1980. Avant cela, on connaissait mieux la surface de la Lune que la surface du fond des océans. Mais avant d’étudier les fonds océaniques, faisons quelques rappels concernant les terres émergées. Pour faire simple, il y a de vastes plaines peu élevées et des chaînes de montagnes. »

Léo : « Monsieur Max, d’après cette carte, on voit qu’il y a beaucoup plus d’océans que de continents à la surface de la Terre. Auriez-vous les pourcentages ? »

Max : « Oui. J’allais l’oublier. 79% de la surface de la Terre est occupée par les océans. »

Samuel : « Cela fait environ les 4/5. Ça fait beaucoup. »

Max : « Passons aux reliefs sous-marins… »

Samuel : « Monsieur Max, à quoi correspondent les espèces de hachures au fond des océans ? »

Max : « Je vais vous montrer des coupes des océans. On parle de profils topographiques. Les voici… »

Profils topographiques de l’océan Atlantique (haut et milieu) et de l’océan Pacifique).

Léo : « C’est pas tout plat ! »

Samuel : « Il y a les îles… Et puis des grands trous dans le Pacifique. »

Léo : « Et au milieu de l’Atlantique il y a comme des montagnes. C’est écrit dorsale. Ça doit être ça les hachures sur la carte du début. »

Max : « Bien observé 🙂 Il y a effectivement de nombreux reliefs au fond des océans. Léo tu as bien identifié les dorsales. Je vous donnerai une définition plus tard. Samuel, tu te doutes que les trous ne s’appellent pas comme cela. Mais tu as bien observé. Un autre document va vous permettre de mieux comprendre. Du moins, je l’espère… »

Profil topographique synthétique d’un océan imaginaire

Samuel : « Oui, je vois mieux comme ça. Les grands trous sont des fosses. »

Léo : « Monsieur Max, quelle est la profondeur moyenne des plaines abyssales ? »

Max : « J’ai encore un document pour vous… »

Léo : « J’ai ma réponse ! 3682 mètres de profondeur en moyenne pour les océans ! »

Samuel : « Je savais pas ça moi… »

Max : « Qu’est ce que tu ne savais pas Samuel ? »

Samuel : « La plus grande montagne du monde ! Je croyais que c’était l’Everest mais c’est pas vrai ! C’est l’île d’Hawaï ! »

Max : « Eh oui ! Le volcan culmine à 4207 mètres au-dessus du niveau de la mer. Mais à cet endroit, les fonds océaniques sont à environ 5000 mètres de profondeur. Le total fait près de 10 kilomètres, bien plus que l’Everest. Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max. »

Max : « Bien. Ah ! J’oubliais. Voici un document qui montre la répartition des altitudes des continents et des profondeurs des océans… »

Léo : « Monsieur Max, il va falloir apprendre tout ça ? »

Max : « Ce serait bien… Mais ce n’est pas au programme des évaluations. A part peut-être les définitions de dorsale et de fosse. Je les donnerai dans le cours mais elles sont déjà dans le vocabulaire. « 

Léo : « Ce n’est pas difficile. Une fosse c’est une longue dépression étroite au fond des océans. »

Samuel : « Et une dorsale est une chaîne de montagnes qui se trouve au fond des océans. »

Max :  » 🙂 Avez vous des questions mes petits ? »

Léo : « Oui monsieur Max. Quel est le diamètre de la Terre ? »

Max : « Le rayon moyen de la Terre est d’environ 6370 km. »

Samuel : « 6370 km ! Et les océans qui nous paraissent profonds ne font que 3,6 km  en moyenne ! »

Léo : « De tête ça fait 0,05% du rayon terrestre. »

Samuel : « Autant dire qu’il y a qu’une très fine couche d’eau à la surface de la Terre ! »

Retour à la répartition mondiale des séismes

Séance suivante

La répartition mondiale des séismes

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 »

Léo : « Monsieur Max, j’ai une question ! J’ai remarqué que les séismes avaient lieu un peu toujours aux mêmes endroits. Le Japon, le Pérou, Haïti… Où ont lieu les tremblements de Terre ? »

Max : « Bonne question Léo 🙂 C’est ce que nous allons étudier aujourd’hui. Plus précisément, la question du jour est : ‘Comment les tremblements de terre sont-ils répartis à la surface de la Terre ?‘ »

Léo (à Samuel) : « Je pose des bonnes questions moi. »

Samuel (à Léo) : « Moi aussi je pose des bonnes questions ! »

Max : « Vous posez tous les deux de bonnes questions. Ne vous jalousez pas ! Cette question est vraiment intéressante et en soulève d’autres auxquelles nous répondrons plus tard. Il va falloir que vous soyez patients pour avoir les réponses. Et puis, il vous manque quelques connaissances. Il va donc être nécessaire de faire une parenthèse sur les reliefs terrestres avant de faire la leçon. Mais rassurez-vous, tout ce que nous allons voir est à votre portée. Bien, commençons par une observation. Cette carte présente la répartition mondiale des séismes. »

 

Carte de répartition mondiale des séismes

Samuel : « Ah ben oui… Il y en a pas partout des tremblements de terre. »

Léo : « Ben non. On voit qu’ils sont concentrés dans certaines zones alors que dans d’autres zones il n’y en a pas du tout ! »

Samuel : « Monsieur Max, à quoi correspondent les zones où on observe des tremblements de terre ? »

Max : « C’est là qu’intervient la petite parenthèse sur les reliefs terrestres… »

Lien vers la petit parenthèse

Max : « Alors, vous avez bien suivi la petite parenthèse ? »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Alors revenons à nos séismes… Je vous redonne les deux documents les plus importants… »

Carte de répartition des séismes

Carte des reliefs terrestres

Léo : « Il y a des tremblements de terre au niveau des dorsales ! »

Samuel : « Et puis le long des fosses ! »

Léo : « Et… Mais on voit pas bien… Il me semble qu’il y a en a aussi dans les chaînes de montagnes… »

Max : « Exact ! Vous avez trouvé dans quels contextes géodynamiques on trouve des séismes. Vous souvenez-vous des mouvements qui accompagnent les failles ? »

Samuel :  » Moi monsieur Max ! Je sais ! Moi ! Moi ! »

Max : « Je t’écoute Samuel 🙂 »

Samuel : « Il y a les mouvements de divergence, de convergence et de coulissement. »

Léo : « Quand ça s’écarte, quand ça se rapproche et quand ça glisse l’un contre l’autre. »

Max : « Merci d’avoir traduit Léo 🙂 Regardons maintenant une autre carte… »

Léo : « Mmmm… Alors au niveau des dorsales et des chaînes de montagnes il y a des mouvements de convergence… »

Samuel : « Et au niveau des dorsales on observe des mouvements de divergence. »

Max : « Excellent ! Votre cerveau fonctionne t-il encore ? »

Samuel et Léo : « Oui monsieur Max !!! »

Max : « Alors voici un dernier document… »

Léo : « Oulala ! Tout ça de séismes ! »

Samuel : « Léo, tu as vu ? Il y a trois bandes parallèles ! »

Léo : « A quoi ça correspond ? »

Samuel : « On a qu’à regarder la légende ! »

Léo : « Ben oui 🙂 Alors… Ça représente la profondeur des foyers. En jaune ils sont à moins de 70 km. En vert, ils se situent entre 70 et 350 km et en rouge ils sont à plus de 700 km de profondeur. »

Samuel : « 700 km !!! Rholala !!! »

Léo : « Monsieur Max, à quelle profondeur ont lieu les séismes sous les dorsales et les chaînes de montagnes ? »

Max : « En général les foyers se trouvent à moins de 70 km de profondeur. Voilà, vous savez tous 🙂 Nous pouvons rédiger la leçon. Prenez vos cahiers et notez. »

V. LA RÉPARTITION MONDIALE DES SÉISMES.

Les séismes ne sont pas répartis au hasard à la surface de la Terre. On les observe dans des reliefs particuliers :

– les chaînes de montagnes (convergence et foyers peu profonds) ;

– les fosses océaniques (convergence et foyers peu profonds à très profonds) ;

– les dorsales océaniques (divergence et foyers peu profonds).

Les fosses océaniques sont des dépressions allongées et étroites en bordure de continents ou d’arcs insulaires.

Les dorsales océaniques sont des montagnes allongées qui s’étirent sur 80 000 km au fond des océans. (On y observe un important volcanisme).

Max : « Vous avez bien travaillé mes petits. Vous avez bien mérité votre récréation. Vous pouvez filer. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir ! Et n’oubliez pas d’apprendre vos leçons. »

Séance suivante

L’origine des séismes – la leçon

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max ! »

Léo : « Monsieur Max, allez-vous rendre les évaluations de la séance précédente ? »

Max : « Oui, à la fin de l’heure. La moyenne de la classe est de 20/20 mais je ne vous donnerai pas vos notes tout de suite 🙂 Aujourd’hui nous allons nous reposer un peu en faisant la leçon qui correspond aux deux dernières activités. »

Léo : « Nous ne faisons pas le petit rappel ? »

Max : « Si. Si tu veux Léo. »

Léo : « Je fais dans l’ordre où ça se passe. Pas dans l’ordre dans lequel on a étudié. Au début il y a des contraintes qui s’exercent sur les roches. Il ne se passe rien jusqu’à ce que ça se casse. La cassure débute en un point appelé foyer et se propage. Ça donne une faille. Au moment de la cassure des ondes sont émises. Elles se propagent dans toutes les directions de l’espace en s’atténuant. En arrivant à la surface de la terre elles provoquent un tremblement de terre. Et voilà ! »

Max : « Très bien Léo. C’est à peu de choses près ce que nous allons noter dans les cahiers. »

Samuel : « Monsieur Max, c’est toujours comme ça en géologie ? On observe des conséquences et on remonte petit à petit au début du phénomène. »

Max : « Oui Samuel. C’est ce qui me plaît dans cette science assez mal aimée. C’est comme une enquête 🙂 On cherche des indices pour raconter une histoire. »

Samuel : « Moi ça me plaît bien 🙂 « 

Max : « J’en suis ravi 🙂 Maintenant ouvrez vos cahiers et notez ! »

IV. L’ORIGINE DES SÉISMES

A tout moment, des contraintes s’exercent sur les roches. Si les contraintes sont croissantes, ces roches se cassent d’un seul coup. La cassure débute en un point appelé foyer. Elle se propage et donne une faille. Au moment de la cassure, des ondes sismiques sont émises. Elles se propagent dans toutes les directions de l’espace en s’atténuant. En arrivant à la surface elles créent un tremblement de terre qui peut avoir de terribles conséquences sur les paysages et les humains.

Les contraintes sont la conséquence de l’énergie interne de la Terre accumulée lors de sa formation.

Max : « Bien. Le chapitre est terminé. Je vous montrerai la répartition mondiale des séismes plus tard. Je vous conseille de bien revoir vos leçons. »

Samuel : « On peut aller en récréation ? »

Max : « Bien sur mes petits. Amusez vous bien 🙂 « 

Samuel et Léo : « Au revoir monsieur Max ! »

Séance suivante