Le développement intra-utérin

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. »

Samuel : « Je fais le petit rappel ! Nous savons des tas de choses sur la reproduction humaine. L’homme produit des spermatozoïdes de la puberté à la mort dans ses testicules. Pour former du sperme il faut également des liquides qui sont produits dans la prostate et la vésicule séminale. Le sperme se forme lors de l’éjaculation. La femme produit des ovules de la puberté à la ménopause. Il y a un ovule de produit à chaque cycle. Il est produit dans l’ovaire avec des cellules folliculaires. Quand le follicule est prêt, il expulse l’ovule de l’ovaire. C’est l’ovulation. Elle a lieu aux alentours du 14ème jour du cycle. »

Léo : « Tu n’as pas dit que le monsieur produit 1000 spermatozoïdes par seconde et qu’ils sont stockés dans les épididymes. »

Samuel : « J’ai oublié. »

Max : « Léo, prends la suite s’il te plaît. »

Léo : « Si il y a un rapport sexuel dans la période de fécondité, c’est-à-dire dans la semaine autour de l’ovulation, il se peut que les spermatozoïdes rencontrent l’ovule. Si tout se passe bien, cette rencontre a lieu dans la trompe. il faut des tas de spermatozoïdes pour détruire la zone pellucide autour de l’ovule. Puis un spermatozoïde touche vraiment l’ovule. Il y a alors fécondation. Une cellule-œuf apparaît. C’est bizarre mais la cellule-œuf est déjà un individu. Au bout de 24h environ, cette cellule-œuf se multiplie. Elle donne une embryon de deux cellules. À partir de là, les multiplications cellulaires s’enchaînent à toute vitesse. L’embryon contient deux, puis quatre, puis huit cellules et ainsi de suite. Ça donne une petite boule de cellules appelée morula. Au bout de 6 jours environ, cette morula arrive dans l’utérus et si tout se passe bien elle s’installe dans la muqueuse utérine. C’est la nidation. Nous nous sommes arrêtés là. »

Samuel : « Ben non ! Nous avons vu les jumeaux ! Les jumeaux c’est quand il y a plusieurs embryons. Ils peuvent deux ou trois ou même quatre les jumeaux. Les vrais jumeaux se forment avec une seule fécondation. L’embryon se divise rapidement et donne deux embryons. Les vrais jumeaux sont presque identiques. Pour les faux jumeaux, que nous devrions appelés jumeaux fraternels, il y a deux fécondations. Comme pour deux individus nés séparément. »

Max : « Très bien à tous les deux. nous allons maintenant voir ce que donne la suite. Mais uniquement en ce qui concerne la bébé. Voici un document… »

Développement

Léo : « Oulala ! Le cœur bat rapidement ! En même pas trois semaines ! »

Samuel : « Et à la fin du deuxième mois, les organes sont formés ! »

Max : « Ils sont formés mais ne fonctionnent pas encore. C’est parce que les organes sont en place que l’embryon prend le nom de fœtus. »

Léo : « Alors il y a la cellule-œuf pendant 24h environ puis l’embryon pendant deux mois et ensuite c’est le fœtus. »

Max : « Oui Léo. Une chose n’est pas indiquée dans ce document. Entre la 24ème et la 28ème semaine, le fœtus se retourne. »

Samuel : « A la fin de la grossesse, le fœtus se présente donc la tête en bas. »

Max : « Oui, sinon l’accouchement est un peu compliqué. avez-vous des questions ? »

Léo : « Oui monsieur Max ! Le fœtus se développe dans l’utérus ? »

Max : « Oui Léo. »

Léo : « Alors il faut qu’il s’étire l’utérus. »

Max : « C’est fait pour Léo. »

Léo : « Et il y a une poche des eaux. Ça veut dire que le foetus se développe dans l’eau ? »

Max : « Oui Léo. »

Samuel : « Alors comment fait-il pour respirer ? »

Max : « C’est ce que nous allons étudier lors du prochain cours. Si vous n’avez pas d’autres questions, vous pouvez ranger vos affaires. »

Léo : « J’ai d’autres questions mais je crains que les réponses ne soient un peu longues. Je les garde pour la prochaine fois. »

Max : « D’accord 🙂 Alors filez. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Séance suivante

L’attraction des individus (Correction)

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 « 

Léo : « Monsieur Max, avez-vous corrigé nos copies ? »

Max : « Bien sûr Léo. Nous allons faire la correction puis je vous rendrai vos travaux. Je ne donne pas les notes mais sachez que la moyenne de la classe est de 20/20 🙂 Qui veut rappeler ce que vous avez étudié ? »

Samuel : « L’attraction des individus ! Parce que parfois, monsieur et madame sont loin d’un de l’autre et il faut bien qu’il se retrouvent pour la fécondation ! »

Léo : « Et comme ils sont loin d’un de l’autre, ils ne peuvent pas se voir ! »

Max : « C’est bien ça ! Samuel, veux-tu aller faire la correction au tableau ? »

Léo : « J’y vais de ce pas ! »

Observation : Nous avons vu que les animaux se livrent parfois à des parades avant de faire la fécondation. Mais parfois les individus sont éloignés les uns des autres.

Problème : Comment font-ils pour se retrouver ?

Hypothèse : Nous supposons que la femelle sécrète une substance dans l’air pour attirer les mâles.


Expérience :

Protocole :

Pour la première partie, une femelle est placée dans une cage grillagée. Les mâles peuvent la voir et la sentir.

Pour la deuxième partie, une femelle est placée dans une boite vitrée fermée hermétiquement. Les mâles peuvent la voir mais ils ne peuvent pas la sentir.

Pour la dernière partie, nous plaçons dans une cage grillagée un morceau de papier sur lequel a séjourné une femelle. Les mâles peuvent sentir l’odeur qu’a laissée la femelle mais ils ne peuvent pas la voir.

Résultats :

Pour la première, en quelques heures des mâles se pressent autour de la cage.

Pour la deuxième, aucun mâle n’est attiré.

Pour la dernière, les mâles sont attirés comme si la femelle était là.


Interprétation :

Dans la première, les mâles sont attirés mais on ne peut pas savoir s’ils l’ont repérée par la vue ou en détectant les substances émises.

Dans la deuxième, la boîte hermétique est transparente. Les mâles ont pu voir la femelle mais ne l’ont pas sentie. Les mâles ne sont pas attirés par la vision de la femelle.

Dans la dernière, les mâles ont pu sentir la femelle mais ne l’ont pas vu. Ils sont donc attirés par la substance émise par la femelle et qui est restée sur le papier.


Conclusion :

La femelle de grand paon de nuit émet une substance qui peut attirer les mâles à plusieurs kilomètres de distance.

Max : « C’est très bien Léo. Je peux vous donner un petit complément avant de vous rendre les copies. Dans de nombreuses espèces animales les femelles émettent des substances qui attirent les mâles à plusieurs kilomètres. Ces substances sont appelées phéromones. Le mâle du grand paon de nuit possède des grandes antennes ramifiées. C’est avec ces antennes qu’il perçoit les phéromones de la femelle. Voilà 🙂 Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max ! »

Max : « Alors allez vous dégourdir les pattes en récréations ! Et ne vous chamaillez pas trop 🙂  »

Samuel et Léo : « Au revoir monsieur Max ! »

Correction de l’activité Phéromones

Séance suivante

L’attraction des individus

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits ! »

Léo : » Monsieur Max, j’ai une question ! »

Samuel : « Moi aussi monsieur Max ! »

Max : « Des questions ? Ça me plaît bien 🙂 Léo, quelle est ta question ? »

Léo : « Nous avons vu que les animaux se livrent parfois à des parades avant de faire la fécondation. Mais parfois les individus sont très éloignés les uns des autres. Comment font-ils pour se retrouver ? »

Max : « Très bonne question ! Avant de te répondre, je voudrais entendre la question de Samuel. »

Samuel : « Ma question concerne les gamètes qui sont libérés dans l’eau. Mais c’est un peu le même problème que celui que soulève Léo : comment font les gamètes pour se retrouver dans l’eau ? »

MAx : « Très bonne question également. Mais une chose à la fois. Aujourd’hui nous allons nous concentrer sur la question de Léo. Vous n’êtes pas les premiers à vous poser cette question. Jean-Henri Fabre (1823-1915), un grand entomologiste français s’est lui aussi interrogé à ce sujet. Voici ce qu’il a écrit dans ses Souvenirs entomologiques.« Léo : « Monsieur Max, avez-vous déjà vu le grand paon de nuit ? »

Max : « L’adulte non. Mais j’ai croisé une chenille un jour 🙂 « 

Monsieur Max est une chenille du grand paon de nuit 🙂

Léo : « Rhooo la chance ! »

Max : « Et oui 🙂 Revenons à nos papillons… »

Samuel : « Je suppose que le grand Fabre a formulé une hypothèse. »

Max : « Oui Samuel. La voici :

Léo : « D’accord. Elle est formulée bizarrement mais je comprends. »

Samuel : « Il faudrait une expérience pour vérifier cette hypothèse. »

Max : « Là voici ! »

Un mâle du grand paon de nuit peut retrouver une femelle à plusieurs kilomètres. On peut émettre l’hypothèse qu’une substance émise dans l’air attire les mâles.

Léo : « Je suppose que nous devons rédiger une démarche expérimentale ? »

Max : « Tu supposes bien Léo 🙂 Vous aurez alors la réponse à la question que tu nous as posé 🙂 Au travail ! »

Un peu plus tard…

Samuel : « Terminé ! »

Léo : « Terminé aussi ! »

Max : « Je ramasse vos copies… Bien… Vous avez bien mérité votre récréation. Allez vous dégourdir les pattes en récréation. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits 🙂 « 

Séance suivante

Les premières étapes du développement.

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires.

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 « 

Léo : « Je fais le petit rappel ! Nous parlons de la reproduction sexuée. Il faut un mâle qui produit des spermatozoïdes et une femelle qui produit des ovules. »

Samuel : « Et il faut qu’ils soient de la même espèce ! »

Léo : « Merci Samuel, j’allais l’oublier. Ensuite, soit il y a accouplement soit il n’y a pas accouplement. Mais l’ovule et le spermatozoïde vont ce rencontrer et ça va donner une cellule-œuf. »

Samuel : « C’est la fécondation ! C’est la rencontre suivie de la fusion d’un ovule et d’un spermatozoïde. Elle donne naissance à une cellule-œuf à l’origine d’un nouvel individu ! »

Max : « C’est très bien ! Encore une fois vous connaissez bien vos leçons. Nous allons maintenant voir la suite. Reprenons les images de la fécondation… « 

Photographies montrant les étapes de la fécondation.

Max : « Vous vous souvenez que seul le noyau du spermatozoïde pénètre l’ovule puis ces deux noyaux fusionnent. »

Léo : « Ça donne la cellule-œuf ou zygote. »

Max : « Voici la suite… »

Photographies montrant le développement de la cellule-œuf.

Samuel : « La cellule-œuf s’est multipliée pour donner deux cellules ! »

Léo : « Puis ces deux cellules se sont multipliées pour en donner quatre ! »

Samuel : « Après il doit y en avoir huit ! »

Max : « C’est exact ! Que remarquez-vous au sujet de la taille des cellules ? »

Léo : « Elles sont de plus en plus petites ! »

Samuel : « Ça ne m’étonne pas ! Monsieur Max nous a dit que l’ovule, donc la cellule-œuf, est une cellule de très grande taille par rapport aux cellules de l’individu. »

Léo : « Monsieur Max, comment appelle t-on le machin constitué de quelques cellules ? »

Max : « C’est un embryon. On lui donne des noms différents selon le stade d’évolution. C’est d’abord une morula puis une blastula, une gastrula… Mais retenez embryon. Revoyons cela en film… »

Max : « Qui veut résumer ce que nous venons de voir ? »

Samuel et Léo : « Moi ! moi ! »

Max :  » 🙂 Léo… »

Léo : « Suite à la fécondation, la cellule-œuf se multiplie et devient un embryon. A chaque multiplication une cellule donne deux cellules. »

Max : « C’est très bien Léo. Ensuite, ça se complique. L’embryon peut donner une larve. »

Samuel : « Comme chez les insectes ? »

Max : « Oui et non… Chez les insectes que nous avons étudiés en 6ème, la larve sort de l’œuf. »

Samuel : « Ah oui ! Je me souviens ! œuf, larve, nymphe et adulte ! »

Léo : « Ce sont les étapes du développement avec métamorphose ! »

Max : « Oui mes petits 🙂 Prenons l’oursin maintenant. Les gamètes sont libérés dans l’eau et il y a une fécondation externe. La cellule-œuf donne un embryon directement dans l’eau puis cet embryon devient une larve…. »

Larve d’oursin (SNV Jussieu)

Léo : « Monsieur Max, quelle est la différence entre l’embryon et la larve ? »

Max : « L’embryon ne se nourrit pas. Ses cellules utilisent les réserves nutritives qui avaient été stockées dans la cellule-œuf. »

Léo : « Merci monsieur Max. »

Samuel : « Ce que vous nous dites se déroule dans l’eau. Mais en milieu aérien ? »

Max : « Bonne question Samuel. Il y a deux possibilités : soit la femelle pond un oeuf, soit le développement se fait dans la femelle. »

Samuel : « Les ovipares et les vivipares ! »

Léo : « Mais je suppose que dans les deux cas, la cellule-œuf donne un embryon ! »

Max : « Oui Léo. Puis l’embryon donne une larve ou un fœtus. Voilà, vous savez tout ! Avez-vous des questions ? « 

Samuel et Léo : « Non monsieur Max ! »

Max : « Alors prenez vos cahiers et notez ! »

III. LES PREMIÈRES ÉTAPES DU DÉVELOPPEMENT.

Suite à la fécondation, la cellule-œuf se multiplie et devient un embryon. A chaque multiplication une cellule donne deux cellules. Les multiplications cellulaires se poursuivent. En milieu aquatique, l’embryon devient une larve autonome qui se nourrit seule. En milieu aérien il y a deux possibilités principale. Chez les espèces ovipares, le développement se fait dans un œuf pondu par la femelle. Chez les espèce vivipares, l’embryon se transforme en fœtus puis un nouveau-né vient au monde après une gestation de durée variable.

Une espèce ovipare est une espèce dont les femelles pondent des œufs.

Une espèce vivipare est une espèce dont les petits viennent au monde entièrement formés.

Séance suivante

Vocabulaire de 4ème

Une faille est une cassure d’une couche de roche en deux blocs qui se déplacent l’un par rapport à l’autre.

L’épicentre d’un séisme est la zone où les dégâts ont été les plus importants.

L’intensité d’un séisme en un point est l’estimation des dégâts en ce point. Elle se mesure sur l’échelle E.M.S. 98 graduée de 1 à 12.

Le foyer d’un séisme est un point, situé en profondeur, d’où partent les ondes sismiques.

La magnitude d’un séisme renseigne sur l’énergie libérée lors d’un séisme. Elle se mesure sur l’échelle de Richter.

Les fosses océaniques sont des dépression allongées et étroites en bordure de continents ou d’arcs insulaires.

Les dorsales océaniques sont des montagnes allongées qui s’étirent sur 80 000 km au fond des océans. (On y observe un important volcanisme effusif).

Une nuée ardente est un nuage de gaz et de cendres qui dévale les pentes du volcan à haute vitesse. Au départ, une nuée ardente peut dépasser 500 km/h et 500°C.

Une éruption volcanique est l’émission de produits volcanique (gaz, cendres et laves) à partir d’un centre éruptif.

Un panache éruptif est constitué de cendres projetées verticalement par des gaz à haute vitesse.

Un magma est un mélange de liquide (roche fondue), de solides et de gaz à haute température.

La structure microlithique est caractéristique d’une roche volcanique. Une roche a structure microlithique est composée de cristaux visibles à l’œil nu, d’une matrice contenant des microcristaux.

Une structure grenue est la structure d’une roche magmatique constituée uniquement de cristaux.

La lithosphère est la couche la plus superficielle de la Terre. Elle est froide et cassante. Elle comprend la croûte et le manteau lithosphérique. La lithosphère repose sur l’asthénosphère.

L’asthénosphère est une couche solide, légèrement molle et chaude. Elle s’étend entre 100 et 700 km de profondeur.

La reproduction asexuée est la capacité qu’à un individu à se reproduire seul.

Un clone est un ensemble d’individus qui sont génétiquement identiques.

Une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde.

Un individu fécond est un individu qui peut avoir une descendance.

Un individu stérile est un individu qui ne peut pas avoir de descendance.

Un individu hybride est un individu obtenu par croisement de deux espèces. Il est généralement stérile.

Un gamète est une cellule reproductrice.

Une gonade est un organe qui produit les gamètes.

La fécondation est la rencontre suivie de la fusion d’un ovule et d’un spermatozoïde. Elle donne naissance à une cellule-œuf à l’origine d’un nouvel individu.

Une espèce ovipare est une espèce dont les femelles pondent des œufs.

Une espèce vivipare est une espèce dont les petits viennent au monde entièrement formés.

Les parades

Max : »Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! « 

Max : « Bonjour mes petits 🙂 Léo, le petit rappel s’il te plaît. »

Léo : « Nous avons vu que la reproduction sexuée se fait entre un mâle et une femelle de la même espèce. Le mâle donne des spermatozoïdes et la femelle donne des ovules. Puis il y a fécondation. La fécondation est la rencontre suivie de la fusion d’un ovule et d’un spermatozoïde. Elle donne naissance à une cellule-œuf à l’origine d’un nouvel individu. »

Max : « Merci Léo. Samuel, la suite s’il te plaît. »

Samuel : « On peut dire qu’en milieu aquatique la fécondation et la suite se font dans l’eau. En milieu aérien, le mâle a un organe particulier pour déposer ses spermatozoïdes dans la femelle. La fécondation et le développement se font dans la femelle. Au moins au début. Parce que la femelle peut pondre des œufs si elle est ovipare. Ou alors elle donne naissance à un ou plusieurs petits si elle est vivipare. »

Max : « Bravo à tous les deux ! Je vous rappelle quelque chose d’important. Il n’y a que deux fonctions chez un être vivant. La fonction de nutrition et la fonction de reproduction. La fonction de nutrition permet à l’individu de rester en vie. La fonction de reproduction permet à son espèce de survivre. Il est donc important de se reproduire, donc de réussir une fécondation. Il y a donc des mécanismes qui favorisent la fécondation et ils sont très importants. »

Léo : « Comme quoi ? »

Max : « Commençons au niveau des individus. Il faut que les individus se rapprochent et forment un couple, au moins le temps de la fécondation. »

Samuel : « Ils se draguent 🙂 « 

Max : « C’est un peu ça. Mais il y a d’autres termes… »

Samuel : « Il y a les parades ! »

Léo : « Oui, on voient les pigeons qui font une espèce de danse pour plaire aux femelles. »

Max : « C’est ce que je vais vous présenter avec quelques petits films. Voyons ça… Les cigognes blanches filmées fin février 2019… »

Léo : « C’est vous qui avez filmé monsieur Max ? »

Max : « Non, c’est le vrai professeur, monsieur O. Il aime beaucoup les oiseaux 🙂 « 

Samuel : « C’est rigolo comme elles claquent du bec en se retournant la tête ! »

Léo : « Et comme elles écartent les ailes ! »

Samuel : « Vous avez d’autres films monsieur Max ? »

Max : « Oui, la parade des grèbes huppés. Ce sont des oiseaux assez fréquents dans les plans d’eau assez grands. Il y en a dans le grand parc qui se trouve pas très loin d’ici… »

Léo : « Rholala ! Comment ils sortent de l’eau ! »

Samuel : « On dirait qu’ils s’offrent des végétaux ! »

Léo : « Et on peut voir ça pas loin d’ici ? »

Max : « Oui, au parc 🙂 Les cigognes c’est un peu plus loin. Mais si vous lisez le Blog de Max… »

Léo : « Vous en avez encore monsieur Max ? »

Max : « Oui, mais cette fois les films viennent d’Internet. Restons chez les grèbes. Cette fois, il s’agit de grèbes élégants qui vient en Amérique du nord. Regardez bien. »

Léo : « Ils courent carrément sur l’eau ! »

Samuel : « C’est très impressionnant !

Léo : « Je suis bien content de découvrir d’aussi belles images ! »

Samuel : « Moi aussi ! Merci monsieur Max ! »

Max : « Alors passons à un petit poisson. J’adore cette vidéo. Il s’agit du poisson globe également appelé poisson-ballon… »

Léo : « C’est le poisson qui a fait ça ? »

Max : « Oui 🙂 »

Samuel : « Rholalaaaaa ! »

Max : « Je suis ravi que cela vous plaise 🙂 « 

Léo : « Mais ça sert à quoi les parades monsieur Max ? »

Max : « Bonne question Léo. Réfléchissons un peu. Les animaux veulent se reproduire et veulent faire des petits en bonne santé. Il faut donc qu’ils soient eux-mêmes en bonne santé. »

Samuel : « Je comprends ! Ils montrent qu’ils sont en bonne santé ! Avec tous les gestes qu’ils font, la femelle voit bien toutes les plumes de partout ! »

Léo : « Et puis, pour les espèces qui élèvent leurs petits, la femelle voit que le mâle est costaud. Il pourra défendre les petits. »

Samuel : « Et leur trouver à manger ! »

Max : « Il y a une autre fonction à ces parades. »

Léo : « Laquelle ? »

Samuel : Je ne vois pas. »

Max : « Vérifier qu’on appartient bien à la même espèce voyons ! Si les deux animaux font les mêmes gestes c’est  qu’ils sont de la même espèce. »

Samuel : « Ben oui ! Ce serait dommage de dépenser de l’énergie pour même pas faire des petits ! »

Max : « Bien, nous pouvons noter la leçon. Prenez vos cahiers et notez. »

IV. DES MÉCANISMES QUI FAVORISENT LA FÉCONDATION.

1. Au niveau des individus.

Beaucoup d’espèces réalisent des parades avant de former un couple et de se reproduire. Ces parades, parfois complexes, permettent de vérifier que les deux individus appartiennent bien à la même espèce. Elles permettent aussi de vérifier que le partenaire est en bonne santé.

Max: « Bien, comme vous avez été sages que qu’il reste un peu de temps, je vais vous montrer deux petits films sur les oiseaux de paradis. »

Max : « Je pourrais continuer pendant des heures. Mais la cloche a retenti. Filez mes petits. »

Léo : « Merci pour ces belles images monsieur Max ! »

Samuel : « Je ne m’étais jamais rendu compte que la nature était aussi belle ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante

Oiseau de paradis (encore 🙂 )

Araignée paon (1)

Oiseau jardinier (1)

Oiseau jardinier (2)

Le paon bleu

La fécondation

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits ! Samuel, le petit rappel s’il te plaît. »

Samuel : « Bien sûr monsieur Max. En ce moment nous étudions la reproduction sexuée chez les animaux. Nous savons que pour qu’il y ait reproduction sexuée il faut un mâle et une femelle de la même espèce. »

Léo : « Une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde. »

Max : « Merci Léo pour cette interruption 🙂 « 

Samuel :  » 🙂 Le mâle produit des spermatozoïdes qui sont des cellules mobiles grâce à leur flagelle. Les femelles produisent des ovules qui sont des cellules sphériques et immobiles. »

Léo : « J’ajouterais que les ovules sont toujours des cellules de très grande taille par rapport aux autres cellules de l’individu. »

Max : « Bravo à tous les deux 🙂 « 

Léo : « Monsieur Max, en 6ème nous avons vu qu’il y avait fécondation de l’ovule par le grain de pollen chez les plantes à fleurs. Est-ce que chez les animaux il y a aussi fécondation ? »

Max : « Encore une excellente question ! C’est ce que je vais vous raconter aujourd’hui. Pas d’activité. Je raconte l’histoire. « 

II. LA FÉCONDATION.

En milieu aquatique, les gamètes sont libérés dans l’eau. Parfois ils sont libérés au hasard, d’autres fois, la femelle et le mâle les déposent au même endroit au même moment.

En milieu aérien, le mâle dépose ses spermatozoïdes dans la femelle grâce à un organe spécialisé (pénis, spermatophore…). Il y a nécessairement un coït (rapport sexuel).

Dans tous les cas il y aura fécondation. La fécondation est la rencontre suivie de la fusion d’un ovule et d’un spermatozoïde. Elle donne naissance à une cellule-œuf à l’origine d’un nouvel individu.

En milieu aquatique la fécondation est externe. En milieu aérien, la fécondation est interne.

Max : « Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max. »

Max : « Zutalor ! Il nous reste un peu de temps… Bon, je vais vous expliquer un peu mieux ce qu’il se passe lors de la fécondation… Tout d’abord regardons une photographie d’un ovule entouré de spermatozoïdes observés au microscope électronique… »

Photographie de la fécondation réalisée au microscope optique à balayage (fausses couleurs)

Max : « Nous voyons là des spermatozoïdes colorés en bleu autour de l’ovule coloré en jaune-orangé. Cette photographie permet de comparer les tailles des gamètes. Lorsque la membrane d’un spermatozoïde touche la membrane d’un ovule des mécanismes complexes se mettent en place et aucun autre spermatozoïde ne pourra entre en contact de l’ovule. Voici une autre photographie montrant la même chose… »

Photographie de la fécondation observée au microscope électronique à balayage.

Max : « Une fois qu’un spermatozoïde s’est fixé à la membrane de l’ovule, les deux membrane fusionnent et le noyau du spermatozoïde pénètre l’ovule qui devient une cellule-œuf ou zygote. Ensuite les deux noyaux, celui de l’ovule et celui du spermatozoïde, vont fusionner. »

Photographie des étapes de la fécondation.

Max : « Voilà ! La sonnerie a retenti. Vous pouvez aller vous aérer en récréation ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir 🙂 « 

Téléphores fauves in copula ( (c) Max Petitours)
Strangalies tachetées in copula ( (c) Max Petitours)
Azurés communs in copula ( (c) Max Petitours)

Séance suivante

Les gamètes

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits ! Qui pour le petit rappel ? »

Léo : « Moi monsieur Max ! Nous étudions la reproduction sexuée chez les animaux. Nous savons déjà qu’il faut un mâle et une femelle de la même espèce pour qu’il y ait reproduction sexuée. Le mâle doit donner des spermatozoïdes et la femelle doit donner des ovules. »

Samuel : « Parfois, il y a des hybrides entre espèces. Mais on en parle pas trop parce que sinon c’est compliqué. »

Max : » Je vois que vous connaissez bien vos leçons. Nous pouvons avancez tranquillement. Savez-vous à quoi ressemble les gamètes ? »

Léo : « Les gamètes ? Qu’est ce que c’est ? »

Max : « Les gamètes sont les cellules reproductrices. Chez le mâle c’est le spermatozoïdes et chez la femelle c’est l’ovule. »

Léo : « Merci monsieur Max. Ça va plus vite de dire gamète que ovule et/ou spermatozoïde. »

Max : « C’est le charme des mots Léo 🙂 Pour étudier les gamètes nous allons utiliser des oursins. Connaissez-vous les oursins ? »

Samuel : « Les oursins ? Comme les animaux avec des longs piquants qui piquent dans la mer ? »

Max : « Ça doit être ça 🙂 Voici l’espèce la plus commune. Il s’agit de l’oursin livide, Paracentrotus lividus (Lamarck, 1816). Vous avez peut-être déjà vu son test. C’est un peu comme une coquille… »

Oursin livide, Paracentrotus lividus (Lamarck, 1816) (source Wikipédia)
Test d’oursin livide, Paracentrotus lividus (Lamarck, 1816)

Max : « Vers le printemps, on peut voir des liquides sortir des oursins. »

Photographie d’oursins libérant leurs gamètes (source : Didier)

Samuel : « Ce sont les gamètes qu’on voit ? »

Max : « Oui Samuel. Nous observerons cela au microscope lors de la prochaine séance. Pour le moment, je vais vous montrer des gamètes humains. »

Samuel : « Monsieur Max, vous nous avez parlé des gonades. On pourrait voir les gonades des oursins s’il vous plaît ? »

Max  : « Bien sûr Samuel. Voici une photographie. »

Photographie d’oursins coupés en deux. On peut voir les gonades : oranges chez la femelle et jaune chez le mâle.

Léo : « Comment s’appelle les gonades monsieur Max ? »

Max : « Chez le mâle ce sont les testicules et chez la femelle ce sont les ovaires. Passons au gamètes. Ce sont des gamètes humains. Vous allez en réaliser des dessins en respectant les méthodes que vous connaissez déjà. Pour le moment, voici des photographies des gamètes.  »

Max : « Que voyez-vous ? »

Léo : « Le spermatozoïde est une cellule très particulière. Apparemment il est constitué d’une tête et d’un flagelle. Je suppose que le noyau est dans la tête. »

Max : « Tu supposes bien Léo. Il y a également un peu de cytoplasme dans la tête et le flagelle. Une cellule reproductrice reste une cellule. »

Samuel : « L’ovule est plus simple. C’est une sphère. Je ne comprends pas bien ce qu’il y a autour. »

Max : « C’est la zone pellucide. Elle protège l’ovule et est impliquée dans la fécondation. C’est compliqué. Vous verrez cela plus tard. »

Léo : « Il y a un noyau aussi dans l’ovule. Il fait quelle taille ? »

Max : « Ça dépend des espèces. En gros, son diamètre est égale à environ 1/10e de celui de l’ovule. J’ai oublié de dire… Le spermatozoïde est mobile. Il se déplace grâce aux mouvements de son flagelle. Regardez… »

Max : « Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max ! »

Max : »Très bien. Alors prenez vos cahiers et notez ! »

LES CARACTÉRISTIQUES DE LA REPRODUCTION SEXUÉE

Pour avoir une reproduction sexuée il faut un mâle et une femelle de la même espèce. (Espèce, fécond, stérile, hybride).

I. LES GAMÈTES.

Les gamètes sont les cellules reproductrices. Ce sont des cellules. On peut donc voir une membrane qui délimite et cytoplasme et elles ont un noyau.

Le spermatozoïde est une cellule spécialisée capable de se déplacer. Il est constitué d’une tête et d’un flagelle. Ce sont les mouvements du flagelle qui lui permettent d’avancer.

L’ovule est une cellule sphérique immobile.

Les gamètes sont produits dans les gonades. Les gonades sont les organes qui produisent les gamètes (ovaire chez la femelle et testicule chez le mâle).

Séance suivante

LA REPRODUCTION SEXUÉE CHEZ LES ANIMAUX

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. »

Samuel : « Monsieur Max, nous avons terminé la géologie. Qu’allons-nous faire maintenant ? »

Max : « Nous revenons à la biologie et nous allons étudier la reproduction sexuée. »

Léo : « La reproduction sexuée ? »

Max : « Oui Léo. Dites moi à quoi ça vous fait penser… »

Léo : « La reproduction sexuée… C’est quand un mâle et une femelle font des bébés ! »

Max : « Oui. Quoi d’autres ? »

Samuel : « Il faut que le mâle et la femelle soient de la même espèce ! Sinon ça ne marche pas ! »

Léo : »Des fois il y a des hybrides ! »

Samuel : « Oui mais les hybrides sont stériles. Ça ne marche pas vraiment. »

Max : « Nous reviendrons sur les hybrides à la fin de la séance. Que pouvez-vous me dire d’autres. »

Léo : « On parle des végétaux aussi ? »

Max : « Oui Léo. Des plantes à fleurs. »

Léo : « Nous avons vu en 6ème que la reproduction des plantes à fleurs se fait grâce au grain de pollen et à l’ovule. »

Samuel : « Oui ! Il faut la pollinisation ! Le grain de pollen se dépose sur le stigmate d’une fleur puis il réussit je ne sais pas comment à féconder l’ovule ! »

Léo : « Après la fleur se transforme en fruit et l’ovule donne la graine qui contient la plantule, qui est un bébé plante. »

Max : « Je vois que vous vous souvenez bien de vos cours de 6ème. Il faudra les réviser et nous reverrons cela. Revenons aux animaux… »

Léo : « Il y a fécondation aussi ? »

Max : « Bonne question 🙂 C’est ce que nous allons voir. Mais avant, continuons à réviser. Qui peut me rappeler ce qu’est une espèce ? »

Samuel et Léo : « Moi ! Moi ! »

Max : « Quel choix cruel ! Mmm… Samuel, je t’écoute. »

Samuel : « Une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde. »

Max : « Très bien Samuel. Léo, toi qui voulais également répondre, peux-tu nous redonner les autres définitions ? »

Léo : « Les autres définitions ? Ah oui ! Il y a hybride, fécond et stérile ! Un hybride est un individu stérile obtenu par croisement de deux espèces. Nous avons vu ça avec les espèces cheval et âne. Il y a des petits mais je ne me souviens plus vraiment… Le mulet et le bardot je crois. Ils sont stériles et ce sont des hybrides. Stérile est un adjectif qualifiant un individu qui ne peut pas se reproduire. Le contraire est fécond. Fécond est un adjectif qui qualifie un individu qui peut se reproduire. »

Max : « Très bien à tous les deux ! Nous nous arrêterons là pour l’introduction. »

Léo : « Monsieur Max, pouvez-vous revenir sur les hybrides s’il vous plaît ? »

Max : « D’accord. J’aime votre curiosité. Mais ce que je vais vous expliquer n’est pas au programme. C’est pour votre culture personnelle. »

Samuel : « J’aime bien écouter pour ma culture personnelle 🙂 »

Les grenouilles vertes

La détermination des grenouilles est parfois délicate et, la plupart du temps, les naturalistes parlent de grenouille verte indéterminée, ce qui signifie qu’il ne savent pas à quelle espèce appartient l’individu qu’ils observent. Ils parlent donc de grenouille verte alors que la grenouille verte n’existe pas ! Il existe deux espèces de grenouilles de couleur vertes : la grenouille rieuse (Pelophylax ridibundus) et la grenouille de Lessona (Pelophylax lessonae).

Grenouille rieuse

Grenouilles de Lessona

Comme vous le voyez ces grenouilles sont très variables mais se ressemblent quand même. Elles appartiennent à deux espèces différentes mais il arrive qu’elles s’hybrident. Et c’est là que ça se complique car la seule hybridation possible est entre  le mâle Lessona et la femelle rieuse. Cela donne la grenouille verte qui est une grenouille hybride appelée Pelophylax kl. esculentes. Le ‘kl.’ indique que c’est une espèce hybride. Mais ça se complique encore. Ces grenouilles vertes peuvent se reproduire entre elles et avoir une descendance féconde. C’est donc bien une espèce ! Mais ces grenouilles vertes peuvent également se reproduire avec les grenouille de Lessona et les petits seront tous de l’espèce Lessona 🙂 Voilà, vous savez tout sur les grenouilles vertes 🙂 Inutile de préciser que presque personne n’est capable de savoir à quelle espèce appartient une grenouille verte 🙂 Avez-vous des questions ? »

Léo : « Il n’y aura pas d’interro sur les grenouilles ? »

Max : « Non Léo. »

Léo : « Je préfère ça… Je crois quand même que j’ai compris l’essentiel. »

Max : « Pourrais-tu nous en faire part s’il te plaît Léo ? »

Léo : « Bien sûr monsieur Max. Ce n’est pas très difficile à comprendre. La nature s’en fiche de nos définitions 🙂 « 

Max : « C’est une bonne conclusion Léo 🙂 Vous pouvez maintenant filer en récréation. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante

Dérive des continents ou tectonique des plaques ?

Max : « Nous voici dans un nouveau complément 🙂 « 

Léo : « On aime bien les compléments nous 🙂 « 

Max : « Tant mieux. Vous me parliez de dérive des continents alors que je vous enseignais la tectonique des plaques. Voyons les différences. La dérive des continents est une intuition géniale d’un scientifique allemand du début du 20ème siècle : Alfred Wegener. C’était un astronome et météorologue. »

Samuel : « Il n’était pas géologue ? »

Max : « Non. Et ce fut un problème. Retournons au début du 20ème siècle. La météorologie n’est pas du tout précise et Wegener se lance dans des explorations du globe afin d’accumuler les observations dans l’espoir de réussir à affiner les modèles de prévisions météorologiques. Et c’est un esprit curieux. Ses observations ne se limitèrent pas à la météo. »

Léo : « Qu’a-t-il observé d’autre ? »

Max : « Des tas de choses. Des fossiles par exemple. Il a remarqué, mais il n’était pas le seul, que les aires de répartition de certains fossiles datés de 260 à 240 millions d’années avant nos jours étaient difficiles à expliquer. »

Samuel : « Quels sont ces fossiles ? »

Max : « Il y a 4 exemples classiques. Commençons par le mésosaure. C’est un ‘reptile’ d’eau douce qui pouvait atteindre un mètre de long. Regardez.

Max : « Ses fossiles s’observent au sud-est de l’Amérique du sud et au sud-ouest de l’Afrique. Le lystrosaure et le cynognathus ont également des aires de répartition assez étranges. »

Lystrosaurus

Cynognathus

Max : « Ce sont deux animaux terrestres. Le cynognathus s’observe lui aussi en Amérique du sud et en Afrique du Sud, un peu au nord des sites où ont été retrouvés les fossiles des mésosaures. Le cynognathus se retrouve aux mêmes endroits mais aussi en Inde et en Antarctique. »

 

Léo : « C’est étrange. Surtout pour des animaux d’eau douce ou terrestres. »

Samuel : « Ils n’ont pas pu traverser l’Atlantique à la nage ! »

Max : « C’est encore plus étrange pour des plantes ! On retrouve des fossiles de glossoptéris un peu partout dans l’hémisphère sud. »

Photographie de feuilles fossilisées de glossopteris

Carte de répartition mondiale de fossiles de 4 espèces

Léo : « Vous avez déjà remarqué que les côtes de l’Afrique et de l’Amérique du sud semblent bien s’emboîter ? « 

Samuel : « Ça m’a toujours surpris. »

Léo : « Si on les emboîte les aires de répartitions des fossiles semblent bien plus logiques ! »

Max : « C’est aussi ce que s’est dit Wegener. Regardez ce que ça donne. »

Samuel : « Tous les continents sont emboîtés ! »

Léo : « Ça marche bien… »

Max : « On appelle ce vaste continent ‘Pangée’ ce qui signifie ‘toutes les terres’.

Léo : « Et la Pangée explique d’autres faits ? »

Max : « Oui Léo. Certaines roches qui s’observent de part et d’autres de l’Atlantique par exemple. Voyons ça… »

Max : « Nous voyons qu’une vaste chaîne de montagne érodée se retrouve de part et d’autre de l’Atlantique. Une partie est appelée Appalaches et l’autre Mauritanides. »

Léo : « Ça alors ! Le plus étonnant est qu’une chaîne de montagnes montre qu’il y a eu collision de deux lithosphères continentales. Et là, la divergence a eu lieu dans la chaîne de montagnes ! »

Max : « Oui Léo. C’est le seul cas que je connaisse… »

Samuel : « Il y a autre chose encore ? »

Max : « Des traces de glaciation. Vous savez sûrement que les glaciers se déplacent. S’ils reposent sur des cailloux ou des rochers mobiles, ces rochers avancent eux aussi mais comme ils sont écrasés ils griffent les roches sur lesquelles ils avancent. On parle de stries glaciaires. Wegener en a observé beaucoup dans l’hémisphère sud. Et encore une fois, elles ne s’expliquent qu’en rassemblant les continents actuels en la Pangée. »

Max : « A partir de toutes ces observations Wegener a donc proposé la Pangée et la dérive des continents. Mais il n’a eu aucun succès. »

Léo : « Pourquoi ? »

Max : « Pour deux raisons qui sont évidemment liées. La première est qu’il n’était que météorologue. Une science qui n’était pas vraiment prise au sérieux à l’époque. Les géologues qui se prenaient pour de vrais scientifiques n’ont pas apprécié que ce ne fut pas l’un des leurs qui propose cette intuition. Et puis Wegener ne proposait pas d’explication. Il n’avait pas de théorie. »

Samuel : « Qu’est ce qu’une théorie monsieur Max ? »

Max : « La vérité pour un scientifique 🙂 Une théorie… Je vais vous donner trois des définitions les plus unanimement acceptées actuellement. »

Selon André Lalande (1991), une théorie scientifique est une large synthèse se proposant d’expliquer un grand nombre de faits.

Selon Robert Nadeau (1999) une théorie est un système intellectuel provisoire et révisable, utilisé comme moyen de coordonner, calculer, interpréter, comprendre, expliquer et prédire.

Selon Karl Popper (1902-1994) il s’agit d’un système formé d’énoncés synthétiques universels permettant, à l’aide de conditions initiales appropriées, de fournir une explication causales de faits exprimés par des énoncés singuliers, ou d’en effectuer la prédiction.

Léo : « Je ne comprends pas tout… Une théorie doit expliquer des faits et faire des prédictions. C’est ça ? »

Max : « C’est une version simple mais compréhensible. »

Samuel : « Je vois ! Wegener dit que les continents ont dû se déplacer pour expliquer les observations qu’il a faites. Mais il ne dit pas comment ils bougent. Alors ce n’est pas une théorie. »

Max : « Exact Samuel ! Mais c’est une intuition géniale ! Et c’est pour cela que les autre scientifiques l’ont détesté ! Il a eu cette intuition et, plein d’humilité, il leur a demandé de l’expliquer. »

Samuel : « Et la théorie de la tectonique des plaques, qui l’a inventée ? »

Max : « Il a fallu du monde 🙂 C’est une accumulation de publications qui a mené à cette théorie. Si je devais garder un nom… Je dirais Xavier Le Pichon dans les années 1980. 1986 il me semble. »

Léo : « Il aura fallu 70 ans pour comprendre ! »

Max : « Pour comprendre en partie. Nous ne savons pas tout encore ! Il reste du travail. Je vais reprendre cette théorie en un schéma. Vous êtes prêts ? »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Il y a beaucoup de chaleur au centre de la Terre. Elle provoque des mouvements dans le manteau. On parle de cellules de convection. Ces mouvements se font à l’état solide. Ils sont à l’origine de la divergence des plaques et donc du fonctionnement des dorsales. Au niveau de la dorsale il y a fusion, formation de magma et volcanisme. Mais si de la lithosphère se crée, il faut qu’il en disparaisse. C’est ce qu’il se passe au niveau des fosses. Voilà, vous savez tout. »

Léo : « C’est pas très difficile en fait. »

Samuel : « Ben non. Dites monsieur Max, vous nous avez bien dit que vous ne deviez parler que de la lithosphère et de l’asthénosphère n’est ce pas ? »

Max : « Oui Samuel. »

Samuel : « Mais ce n’est pas possible d’expliquer la théorie de la tectonique des plaques avec si peu d’informations ! On ne peut rien expliquer ! »

Max : « Tu as compris mon problème Samuel. Soit je ne fais que ce qu’il m’est demandé et vous ne pouvez pas comprendre. Soit je vous explique et nous prenons du retard dans le programme. »

Léo : « Vous nous avez expliqué et nous vous en remercions monsieur Max. »

Samuel : « Tant pis si on ne voit pas tout. L’essentiel est de comprendre ce qu’on fait. »

Max : « Merci mes petits. Loin de moi l’idée de vous chasser mais il me semble que la sonnerie a retenti. »

Léo : « Alors on file ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante