Les besoins nutritifs des végétaux (1)

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 « 

Léo : « Monsieur Max, puis-je faire le petit rappel ? »

Max : « Je t’écoute Léo. »

Léo : « Nous avons vu que lors de la croissance d’un être vivant sa masse et sa taille augmentent. Il produit sa propre matière. Pour cela il doit prélever de la matière dans son environnement. Et nous avons découvert que se nourrir ce n’est pas aller manger à la cantine 🙂 Se nourrir c’est prélever de la matière dans son environnement pour renouveler ou produire sa matière et produire de l’énergie. »

Samuel : « Et nous savons que tous les êtres vivants se nourrissent ! Les animaux, les végétaux, les bactéries… »

Max : « Bravo à tous les deux 🙂 Voyez-vous le problème qui se pose ? »

Samuel : « Oui ! Nous allons nous demander de quoi les êtres-vivants se nourrissent ! Quels types de matières prélèvent-ils ? »

Léo : « Je crois bien que les animaux et les végétaux ne se nourrissent pas de la même façon… »

Max : « C’est ce que nous allons voir en commençant par les végétaux. De quoi les végétaux se nourrissent-ils ? »

Samuel : « Si on n’arrose pas les plantes, elles meurent. »

Léo : « Elles sont dans la terre. Elles doivent avoir besoin de terre. »

Max : « Connaissez-vous les algues ? »

Samuel : « Oui ! Je vois ! Elles ne vivent pas dans la terre et pourtant ce sont des végétaux. Les végétaux n’ont pas forcément besoin de terre. Ils doivent avoir besoin de ce qu’il y a dans la terre ou dans l’eau ! »

Léo : « Comme les sels minéraux par exemple. Je crois avoir lu cela quelque part. J’ai également lu que les végétaux avaient besoin de dioxyde de carbone. Lui aussi doit être dans l’air ou dans l’eau. »

Samuel : « Et la lumière ! Mes plantes poussent mal quand je les mets loin de la fenêtre ! »

Max : « Je reprends ce que vous venez de dire. Selon vous, les végétaux auraient besoin d’eau, de sels minéraux et de dioxyde de carbone en présence de lumière. »

Léo : « Oui monsieur Max. »

Max : « Êtes-vous sûrs de ces réponses ? »

Samuel : « Euh… Pas vraiment… Il faudrait vérifier. »

Max : « C’est bien Samuel. Savez-vous comment on appelle une réponse qui n’est pas sûre en sciences ? »

Léo : « Une réponse qui n’est pas sûre ? C’est une hypothèse ! »

Max : « Oui Léo. Et comment vérifie-t-on une hypothèse ? »

Samuel : « Il faut faire une expérience. »

Max : « Oui Samuel. Que me proposez-vous ? »

Léo : « Mmmm… Si les plantes ont vraiment besoins de tout ça… Non ! Si nos hypothèses sont justes, alors si on donne tout à une plante, elles doit se développer. »

Samuel : « Et si on enlève un élément, la plante ne se développera pas. »

Léo : « Alors il faut faire 5 pots ! Dans le premier on met tout pour être sûr que ça fonctionne ! Et dans les autres on enlève un élément en changeant à chaque pot. Et puis on attend un peu pour voir. Samuel, tu es d’accord ? »

Samuel : « Oui Léo. Mais je ne vois pas bien comment faire. Je vois bien comment ne pas donner d’eau ou même comment priver la plante de lumière mais pour les sels minéraux ou le dioxyde de carbone… »

Max : « Je vous explique cela. Avant, je tiens à préciser que vous venez de me proposer le protocole c’est-à-dire la description de l’expérience. C’est un peu comme une recette mais ça s’appelle un protocole. »

Léo : « Alors nous nous sommes posés un problème. Nous avons proposé une hypothèse et nous avons proposé le protocole de l’expérience. Tu te rends compte Samuel ? »

Samuel : « Nous sommes des scientifiques 🙂 »

Max : « Des apprentis-scientifiques serait plus juste 🙂 Le protocole peur être donné sous forme d’image ou de texte. Là, nous allons le rédiger. Prenez vos cahiers, nous allons noter le début de l’activité. »

Observation : Les végétaux prélèvent de la matière dans leur environnement pour produire leur propre matière. Ils se nourrissent.

Problème : De quoi les végétaux se nourrissent-ils ?

Hypothèse :

On suppose que les végétaux se nourrissent d’eau, de sels minéraux, de dioxyde de carbone et qu’ils ont besoin de lumière.

Expérience :

Protocole :

On prend cinq pots contenant de la terre et dans laquelle sont plantées des jeunes plantes.

Aux plantes du premier pot, appelé témoin, on donne de l’eau, des sels minéraux, du dioxyde de carbone et de la lumière.

Dans le pot suivant (pot a) on donne des sels minéraux, du dioxyde de carbone et de la lumière (pas d’eau).

Dans le troisième pot (pot b), on donne de l’eau, du dioxyde de carbone et de la lumière (pas de sels minéraux).

Dans le quatrième pot (pot c), on donne de l’eau, des sels minéraux et de la lumière (pas de dioxyde de carbone).

Dans le cinquième pot (pot d), on donne de l’eau, des sels minéraux et du dioxyde de carbone (pas de lumière).

Max : « Avez-vous tout noté ? »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Alors vous pouvez filer en récréation. »

Léo : « Monsieur Max, vous ne nous avez pas expliqué comme faire pour de pas donner de sels minéraux ou de dioxyde de carbone aux plantes ! »

Max : « C’est vrai. Pour les sels minéraux c’est assez simple. En général ils sont dans l’eau. Il suffit donc de donner de l’eau pure aux plantes. La distillation permet d’obtenir de l’eau pure qui est qualifiée d’eau distillée. Vous étudierez cela en physique plus tard. »

Samuel : « Et pour le dioxyde de carbone ? »

Max : « C’est un peu plus compliqué. Il existe des produits liquides qui fixent le dioxyde de carbone. Il faut donc faire passer l’air qui va arriver aux plantes dans ces liquides. Regardez comment on fait. »

Photographie montrant comment on peut fournir de l’air sans dioxyde de carbone à une plante.

Samuel : « Je vois. La pompe fait avancer l’air qui passe dans les flacons 4, 3 et 2 avant d’arriver aux plantes. »

Léo : « Les liquides fixent le dioxyde de carbone. »

Max : « On utilise de la potasse (4) et de l’eau de chaux (3 et 2). Vous voyez que le grand flacon offre de l’eau, des sels minéraux et de la lumière aux jeunes plantes. »

Léo : « Merci monsieur Max. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. N’oubliez pas de bien étudier ce que nous venons de faire. »

Séance suivante

Les espèces – la leçon

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaire. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Qui veut faire le petit rappel ? »

Samuel : « Tu veux commencer Léo ? »

Léo : « Si tu veux 🙂 Nous avons étudié les espèces. Nous savons qu’une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde. A toi Samuel. »

Samuel : « Nous savons que toutes les espèces ont reçu un nom scientifique. Ce nom est constitué de deux parties. Il y a d’abord le nom du genre puis le nom qui précise l’espèce. Ensuite on doit noter le nom du scientifique qui a nommé l’espèce et ajouter l’année où il l’a fait. A toi Léo. »

Léo : « Pour identifier une espèce on utilise une clé de détermination. Ce n’est pas très difficile si on est un peu rigoureux. Je crois qu’on a tout dit. »

Max : « Vous avez tout dit 🙂 Nous allons noter tout cela. Prenez vos cahiers et écrivez. »

DIVERSITÉ ET UNITÉ DES ÊTRES VIVANTS

I. LES ESPÈCES.

Une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde.

Un individu fécond est un individu qui peut se reproduire. Le contraire est stérile. Un individu stérile ne peut pas se reproduire.

Il existe parfois des hybrides qui sont des individus stériles obtenus par croisement de deux espèces.

Les pigeons bisets se ressemblent tous. Ils peuvent avoir une descendance féconde. Ils appartiennent donc tous à la même espèce Columba livia (Gmelin, 1789).

Les pigeons ramiers se ressemblent tous. Ils peuvent avoir une descendance féconde. Ils appartiennent donc tous à la même espèce Columba palumbus (Linnaeus, 1758).

Les pigeons bisets et les pigeons ramiers se ressemblent un peu mais ils n’ont jamais de descendance ensemble. Ils n’appartiennent donc pas à la même espèce.

Les espèces ont toutes reçu un nom scientifique en deux parties.

Pour identifier une espèce on utilise une clé de détermination. Une clé de détermination est un outil qui permet d’identifier une espèce à partir de caractères physiques appelés critères.

Max : « Avez-vous fini de noter ? »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Alors vous pouvez filer en récréation vous détendre un peu. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Séance suivante

Le rejet de l’urée

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Qui veut me rappeler ce qu’il se passe dans un organe ? »

Léo : « Dans un organe ? Vous voulez qu’on refasse le schéma de la formation d’énergie à partir de glucose et de dioxygène ? »

Max : « Tu te sens capable de le refaire rapidement Léo ? »

Léo : « Ben oui 🙂 »

Samuel : « Moi aussi monsieur Max. »

Max : « Pour ne pas faire de jaloux vous allez le faire tous les deux sur une feuille. Je vous laisse quelques minutes. »

Léo : « D’accord 🙂 »

Quelques minutes plus tard…

Max : « Montrez-moi vos travaux… Samuel… C’est parfait. Rien à dire. Léo… Tout aussi parfait. »

Max : « Nous allons le compléter un peu. Sachez que le fonctionnement des organes produit également de l’urée. »

Samuel : « Je suppose que c’est un déchet. »

Léo : « Ce mot me fait penser à l’urine. Il y a un rapport monsieur Max ? »

Max : « Il y en a un 🙂 L’urée est le principal constituant de l’urine. Après l’eau bien sûr. »

Samuel : « D’accord. Merci monsieur Max. Alors l’urine c’est de l’eau avec de l’urée. »

Léo : « Cela pose un problème. L’urée est produite dans les organes. Tous les organes. Et il faut qu’elle aille dans l’urine. Par où ça passe ? »

Max : « C’est ce que vous allez étudier pendant les prochaines séances. »

Samuel : « J’ai une hypothèse pour le début ! Le dioxyde de carbone est lui aussi un déchet produit lors de la production d’énergie dans un organe. Il est d’abord rejeté dans le sang. Je suppose que l’urée est également rejetée dans le sang. »

Max : « Léo, que penses-tu de l’hypothèse de Samuel ? »

Léo : « Je n’aurais pas dit mieux 🙂 »

Max : « Alors vérifions cette hypothèse. Je vous donne une petite activité. Dépêchez-vous de la faire que nous ayons le temps de corriger avant la fin de l’heure. Au travail ! »

Encore un peu plus tard…

Max : « Je propose de rédiger une démarche expérimentale avant de corriger le dessin. »

Samuel : « Je veux bien le faire monsieur Max. »

Max : « Alors va au tableau 🙂 »

Samuel : « Je reprends l’observation et le problème et c’est parti ! »

Max : « Bravo Samuel ! Je n’ai absolument rien à corriger. »

Samuel : « Merci monsieur Max. »

Max : « Léo, veux-tu faire le schéma ? »

Léo : « Bien sûr 🙂 C’est facile 🙂 Je commence par faire la partie dessin. Il y a l’organe et le vaisseau sanguin… »

Léo : « Maintenant j’indique qu’il y a de l’urée dans l’organe… Je note simplement ‘urée’. Et j’indique les valeurs d’urée au-dessus du vaisseau sanguin quand il arrive et quand il repart… Voilà ! Ah oui ! Pour ne pas oublier je fais la légende de la couleur tout de suite. J’ai choisi le orange pour l’urée. »

Léo : « Un peu de coloriage pour mieux voir… »

Léo : « Un flèche qui indique le passage de l’urée de l’organe au sang… Voilà ! Sinon le schéma n’explique rien. »

Léo : « J’ajoute le titre. C’est un schéma. Et il représente le rejet de l’urée dans le sang par un organe. Je crois que j’ai terminé. Oui, c’est fini ! »

Max : « Je n’ai rien à ajouter 🙂 Bravo à tous les deux ! »

Léo : « Nous savons donc que les déchets du fonctionnement des organes sont rejetés dans le sang. Le dioxyde de carbone : dans le sang ! L’urée : dans le sang ! »

Max : « Les élèves : dans la cours de récréation ! »

Samuel : « D’accord monsieur Max ! On file ! »

Léo : « Mais nous ne sommes pas des déchets 🙂 »

Max : « Au revoir mes petits ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Séance suivante

LA REPRODUCTION ASEXUÉE

Max : « Bonjour à tous ! enlevez vos blousons, asseyez-vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Quel plaisir de vous retrouver 🙂 »

Léo : « Le plaisir est partagé monsieur Max 🙂 Dites, nous avons terminé une partie du programme. Qu’allons-nous faire maintenant ? »

Max : « De la biologie. Savez-vous quelles sont les deux fonctions d’un organisme vivant ? »

Samuel : « Je sais ! Je sais ! Un être vivant se nourrit et se reproduit. »

Léo : « Il y a donc la fonction de nutrition et la fonction de reproduction. »

Max : « C’est ça 🙂 La nutrition permet à l’individu de rester en vie et la fonction de reproduction permet à l’espèce à laquelle il appartient de prospérer. Nous pouvons ajouter la fonction de relation. Nous en parlerons un peu. »

Léo : « Je sais pourquoi vous dites ça ! Nous avons déjà étudié la fonction de nutrition. Je suppose que nous allons maintenant aborder la fonction de reproduction. »

Max : « Tu supposes bien Léo. Commençons par la reproduction asexuée. »

Léo : « La reproduction asexuée ? C’est quoi ? »

Max : « La reproduction asexuée ? Vous ne connaissez pas ? La reproduction asexuée est la capacité qu’à un être vivant à se reproduire seul. »

Samuel : « Tout seul ? Sans partenaire ? »

Max : « Oui Samuel. Avez-vous des exemples ? »

Léo : « Mmmmm… Les unicellulaires se reproduisent par multiplication cellulaire. Un individu en donne deux. Il est tout seul au début et il s’est reproduit. C’est la reproduction asexuée ? »

Max : « Oui Léo. La multiplication cellulaire des organismes unicellulaires est bien un mode de reproduction asexuée. »

Samuel : « Il y a les végétaux ! En voulant entretenir la plante de ma chambre, j’ai cassé un morceau de tige. Comme je ne savais pas quoi en faire, je l’ai mis dans l’eau. Des racines ont poussé sur la tige. J’ai donc une autre plante 🙂 « 

Max : « Samuel, tu as fait une bouture sans le savoir. »

Léo : « Une bouture ? »

Max : « Oui Léo. Le bouturage est l’obtention d’un nouvel individu à partir d’un morceau de plante sur lequel vont se développer des racines. »

Léo : « Moi aussi j’ai fait des boutures alors ! J’avais une plante qui poussait tout en hauteur. Elle touchait le plafond. Alors un jour je l’ai coupée et j’ai mis les morceaux dans l’eau. Il y a des racines maintenant. »

Max : « Vous devriez me montrer des photographies. »

Samuel et Léo : « Oui monsieur Max. »

Samuel et son pothos

Le morceau cassé
Une bouture ayant des racines.

Léo et ses boutures de Dracaena marginata

Les racines

Samuel : « Monsieur Max, ce n’est pas très naturel ça. »

Max : « C’est vrai même si le bouturage se produit parfois naturellement. Le marcottage est plus fréquent dans la nature. »

Léo : « Le marcottage ? »

Max : « Le marcottage est un mode de reproduction asexuée dans lequel une partie de la plante développe des racines puis se sépare de la plante mère. L’exemple classique est le fraisier qui se reproduit rapidement de cette façon. »

Stolons du fraisier

Samuel : « Ah oui ! De petites plantes se développent sur une tige rampante et ensuite elles se séparent. »

Max : « C’est ça 🙂 Cette technique est utilisée par les jardiniers pour multiplier des plantes. Ils plient une tige pour qu’elle passe sous terre. Des racines se développent sur la tige puis ils séparent la nouvelle plante de la plante mère. »

Léo : « Alors chez les végétaux il existe plusieurs méthodes de reproduction asexuée. Mais chez les animaux ? »

Samuel : « On peut faire des boutures avec les animaux ? »

Léo : « Je vais te couper une patte et la mettre dans l’eau. Un nouveau Samuel va pousser 🙂 »

Max : « Cela ne fonctionnerait pas avec notre cher Samuel 🙂 Mais il existe un petit ver qui supporte d’être coupé en deux. »

Léo : « Les vers de terre ? »

Max : « Ah non ! Surtout pas ! Je ne veux pas vous voir couper des vers de terre en deux ! Pauvres lombrics ! Vous obtiendriez deux morceaux morts ! Non, pas les vers de terre. Mais la planaire peut le faire. Regardez. »

Samuel : « C’est impressionnant ! »

Max : « Les hydres bourgeonnent pour donner d’autres individus. »

Léo : « Elles bourgeonnent ? »

Max : « Oui Léo. Regarde. »

Max : « Chez les méduses, on parle de strobilation ou stobilisation. Elle fait suite à la reproduction sexuée. Il y a un stade fixé, appelé strobile, qui se fragmente pour donner des tas de petites méduses. »

Max :  » Passons à la parthénogenèse. »

Léo : « Qu’est ce que c’est ? »

Max : « C’est la reproduction à partir d’un ovule non fécondé. La parthénogenèse a été étudiée par Charles Bonnet en 1770 chez les pucerons. »

Samuel : « Une femelle peut donner des petits toute seule ? »

Max : « C’est le principe de la reproduction asexuée Samuel 🙂 »

Léo : « Monsieur Max, je sais que les lézards peuvent détacher leur queue si un prédateur les attrapent. Après la queue repousse. C’est de la reproduction asexuée ? »

Max : « Je parlerais plutôt de régénération. La régénération est la capacité pour un organisme de reconstituer une partie qui a été détruite. Le lézard qui reconstitue sa queue, une étoile de mer qui voit un bras repousser… »

Samuel : « L’axolotl peut régénérer une patte ! »

Axolltl (Ambystoma mexicanum, Shaw et Nodder, 1798)

Max : « Oui l’axolotl peut régénérer une patte 🙂 La salamandre peut régénérer des tas d’organes. »

Léo : « Vous nous avez montré des bébés salamandres tachetées lors d’une sortie ! »

Max : « Je préfère ne pas en parler. Les Amphibiens sont protégés dans la région 🙂 »

Léo : « D’accord monsieur Max. »

Max : « Et si nous notions une leçon ? »

Samuel : « Nous sommes prêts ! »

LA REPRODUCTION ASEXUÉE

La reproduction asexuée est la capacité qu’a un individu de se reproduire seul.

I. CHEZ LES UNICELLULAIRES.

Un être vivant unicellulaire est un être vivant constitué d’une seule cellule. Les unicellulaires se reproduisent principalement par multiplication cellulaire au cours de laquelle un individu en donne deux identiques.

II. CHEZ LES VÉGÉTAUX.

Il existe plusieurs mode de reproduction asexuée chez les végétaux : à partir de stolons, de rhizomes, de tubercules… L’humain peut également multiplier les certains végétaux par reproduction asexuée par bouturage ou marcottage.

III. CHEZ LES ANIMAUX.

L’hydre ou les anémones de mer peuvent se reproduire par bourgeonnement. Les méduses ont recours à la strobilisation.

D’autres animaux ont la capacité de régénération. La régénération est la capacité à reconstituer un organe ou un membre perdu. C’est le cas chez les étoiles de mer, les lézards, l’axolotl…

D’autres animaux peuvent se reproduire à partir d’ovules non fécondés. Il s’agit alors de parthénogenèse.

IV. CONCLUSION.

La multiplication asexuée est un moyen rapide pour coloniser un milieu. Il est inutile de rechercher un partenaire. La plupart du temps, l’individu nouvellement formé est déjà bien développé. De plus, si l’individu parent était bien adapté au milieu, ses descendants le seront eux aussi.

Dans tous les cas, aussi bien chez les unicellulaires que chez les animaux et les végétaux, la multiplication asexuée donne naissance à des individus identiques entre eux. Tous les individus obtenus forment un clone c’est-à-dire un groupe d’individu génétiquement identiques.

Max : « Il y aurait d’autres choses à dire mais il faut savoir s’arrêter. Je vous ajoute juste un petit document sur la reproduction asexuée des végétaux. »

Max : « Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max. »

Max : « Il nous reste quelques minutes. Rangez vos affaires sagement et je vous passe une petite vidéo. »

Léo : « Merci monsieur Max ! »

Max : « Filez vous aérer un peu. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante

Les mouvements des plaques – la leçon

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Je vais vous rendre vos cartes. »

Léo : « Ah oui ! La carte indiquant les mouvements des plaques ! »

Max : « Exact Léo 🙂 »

Samuel : « Avons-nous de bonnes notes ? »

Max : « Les notes, les notes, toujours les notes… Quand comprendrez-vous que si vous travaillez pour savoir vous aurez nécessairement de bonnes notes ? »

Samuel : « Je vous demande pardon monsieur Max. »

Max :  » 🙂 Sans vouloir dévoiler vos notes, je peux vous dire que la moyenne de la classe est de 20/20 encore une fois 🙂 Léo, j’espère que tu ne m’en voudras pas de montrer la carte de Samuel. »

Léo : « Je ne vous en veux pas monsieur Max 🙂 « 

Léo : « Elle est vraiment bien 🙂 Bravo Samuel ! »

Samuel : « Merci Léo. La tienne est vraiment bien elle aussi 🙂 »

Max : « Vous vous féliciterez plus tard. Voici une autre version un peu moins… artisanale 🙂 »

Léo : « Ah oui. C’est moins artisanal 🙂 »

Samuel : « Mais ça reste la même chose. Je préfère ma carte. Elle est le fruit de mon travail. »

Max : « Quel plaisir d’enseigner à des élèves tels que vous 🙂 Qu’avez-vous retenu de votre travail ? »

Léo : « Nous savions déjà que la surface de la Terre est découpée en une douzaine de plaques lithosphériques. Elles sont très grandes mais peu épaisses puisqu’elles ne font qu’une centaine de kilomètres d’épaisseur. Maintenant nous savons qu’elles se déplacent et qu’il y a trois mouvements possibles. »

Max : « Merci Léo. Samuel, veux-tu prendre la suite ? »

Samuel : « Je veux bien. Les mouvements dont parlais Léo sont la divergence qui a lieu au niveau des rifts et des dorsales, la convergence au niveau des fosses océaniques et des chaînes de montagnes et il y a aussi le coulissement. »

Max : « Bravo ! Nous pouvons noter la leçon. Prenez vos cahiers et notez. »

II. LES MOUVEMENTS DES PLAQUES.

Les plaques sont en mouvement les unes par rapport aux autres. Les mouvements peuvent être :

– la divergence au niveau des dorsales et des rifts (volcanisme effusif) ;

– la convergence au niveau des fosses (volcanisme explosif) et des chaînes de montagnes ;

– le coulissement au niveau de grandes failles dites transformantes.

Max : « Avez-vous terminé ? »

Samuel et Léo : « Oui monsieur Max 🙂 »

Léo : « Merci monsieur Max. J’ai une question. »

Max : « Je t’écoute Léo. »

Léo : « Nous avons vu que les plaques lithosphériques se déplacent. Je veux bien. Mais comment est-ce possible ? »

Max : « Bonne question Léo. Excellente question même 🙂 Je vous propose de faire une petite digression et de nous rendre dans un article de complément. »

Samuel : « Allons-y ! »

Le complément

Séance suivante

Manifestations et conséquences des séismes (leçon)

Max : « Bonjour à tous. Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Léo, peux-tu nous rappeler ce que vous avez fait lors de la séance précédente ? »

Léo : « Bien sûr que je peux 🙂 Nous avons étudié des articles de journaux qui parlaient de tremblements de terre. Nous devions trouver les manifestations et les conséquences des séismes. »

Max : « C’est bien ça. Samuel, as-tu retenu les manifestations des séismes ? »

Samuel : « Ce n’est pas très difficile. Je répète ce qu’à dit Léo lors de la séance précédente. Lors d’un séisme la terre tremble. Il y a des secousses qui durent de quelques secondes à quelques minutes. Ces secousses se produisent dans des régions plus ou moins étendues. »

Max : « Parfait 🙂 Léo, les conséquences possibles ? »

Léo : « Je vais répéter ce que Samuel a dit 🙂 Les conséquences possibles d’un tremblement de terre sont des dégâts aux constructions humaines, des blessés et/ou des morts et des sans-abris, des modifications du paysage et des tsunamis. »

Max : « C’est excellent 🙂 Il ne nous reste plus qu’à noter tout cela dans le cahier. Prenez vos stylos et notez. »

LES SÉISMES

Quels sont les manifestations et les conséquences d’un séisme ?

I. MANIFESTATIONS ET CONSÉQUENCES D’UN SÉISME.

Lors d’un tremblement de terre la terre tremble. Les vibrations durent de quelques secondes à quelques minutes et peuvent être ressenties jusqu’à plusieurs centaines de kilomètres.

Les séismes peuvent provoquer :

– des dégâts aux constructions humaines ;

– des blessés et des morts et des sans-abris ;

– des modifications du paysage (failles ou mouvements de terrains) ;

– des tsunamis.

Max : « Bien, si vous n’avez pas de questions vous pouvez rangez vos affaires. »

Léo : « J’ai une question moi monsieur Max ! »

Max : « Je t’écoute Léo.

Léo : « Les articles parlent de magnitude et d’échelle de Richter. Vous pouvez nous expliquer s’il vous plaît ? »

Max : « Bonne question Léo. Je répondrai à ta question lors d’une prochaine séance. »

Samuel : « Et l’épicentre monsieur Max ? Vous expliquerez l’épicentre ? »

Max : « Je l’expliquerai aussi Samuel. Pas d’autres questions ? »

Léo : « Non monsieur Max. »

Samuel : « Moi non plus. »

Max : « Alors rangez vos affaires et allez vous dégourdir les pattes en récréation. Au revoir mes petits. »

Samuel et Léo : « Au revoir monsieur Max ! »

Séance suivante

Remettre un devoir ‘Classroom’

Bonjour à tous,

Je vais vous expliquer le protocole pour rendre un devoir classroom. Vous venez de terminer de répondre aux questions. Vous êtes en bas de la page et vous voyez cela.

Il faut cocher ‘M’envoyer une copie de mes réponses’.

Comme le nom l’indique, vous recevrez une copie de vos réponses dans votre boite de messagerie. C’est la preuve que votre questionnaire est bien parti et que je l’ai reçu. Si vous l’avez, moi aussi.

Vous pouvez maintenant cliquer sur ‘Envoyer’. Voilà, votre devoir et envoyé. Mais ce n’est pas terminé. Cet écran apparaît.

Inutile de cliquer sur ‘Afficher la note’. Tant que je n’ai pas corrigé, vous avez 0. Inutile de m’envoyer un message pour me le dire. Je répète : tant que je n’ai pas corrigé vous avez zéro. Vous recevrez une notification avec votre note réelle quand j’aurai corrigé les devoirs.

Par contre, vous devez cliquer sur ‘Ouvrir le devoir’. Cet écran s’affiche dans un nouvel onglet.

Vous voyez peut-être ‘Marquer comme terminé‘ en haut à droite. C’est écrit en blanc sur fond vert. Vous voyez ? Je zoome un peu…

Cliquez sur ‘Marquer comme terminé‘. Une demande de confirmation apparaît.

Vous cliquez de nouveau sur ‘Marquer comme terminé’. Cet écran apparaît alors.

Votre devoir est maintenant considéré comme remis. C’est écrit en haut à gauche. Dans mon interface il est déclaré remis. Tout le monde sait que le devoir a été fait. Il ne vous reste plus qu’à attendre patiemment que je corrige et que je publie les notes et que je vous remette les devoirs.

Vous savez maintenant faire comment faire pour rendre un devoir Classroom. Cet article est la preuve que je vous ai aidé. Si vous ne respectez pas le protocole j’ai le droit de râler 🙂

Afin de terminer, je vous annonce ce que je peux évaluer. Bien sûr cela dépend de l’exercice à faire. Mais dans tous les cas je peux évaluer la façon dont vous vous êtes organisé vous ce devoir. Regardez ça 🙂

Voilà 🙂 Vous savez tout maintenant. Il ne reste plus qu’à vous mettre au travail.

Les composantes de l’environnement, la leçon

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits. Léo, peux-tu nous dire ce que nous avons vu lors des deux dernières séances ? »

Léo : « Nous avons vu de beaux animaux 🙂 « 

Max : « Je suis ravi que tu les trouve beaux 🙂 Mais ce n’est pas l’objet de la leçon. »

Léo : « Je le sais bien monsieur Max 🙂 Alors… Nous avons étudié les composantes de l’environnement grâce à l’exemple de la mare qui est un environnement. Nous avons vu que dans un environnement il y a des composantes minérales comme l’eau, les roches ou l’air. Il y a également des êtres vivants et des objets techniques. »

Max : « C’est très bien Léo. Aujourd’hui nous allons noter la leçon et en discuter un peu. Prenez vos cahiers et notez. »

L’ENVIRONNEMENT

L’environnement est tout ce qui nous entoure.

Exemples : Forêt, plage, mare, parc…

Problème : Qu’est ce qu’il y a dans un environnement ?

I. LES COMPOSANTES DE L’ENVIRONNEMENT.

Dans un environnement on peut observer des composantes minérales, des êtres vivants et des objets techniques.

Les composantes minérales sont l’eau, l’air et la roche.

Il existe trois règnes d’êtres vivants : le règne des végétaux, le règne des animaux et le règne des champignons.

Un objet technique est un objet réalisé par un animal pour répondre à un besoin. (toile d’araignée, terrier, nid…)

Léo : « Monsieur Max, vous aviez dit que vous nous expliqueriez mieux pourquoi nous n’allons pas étudier la ville ou le collège. »

Max : « Oui, maintenant je le peux. Nous étudions les sciences de la vie et de la terre et donc ce qui est naturel. Or, dans le collège et les villes, il y a surtout des objets techniques. »

Léo : « Alors nous pouvons dire qu’il y a des environnements naturels qui contiennent surtout des composantes minérales et des êtres vivants et des environnements artificiels qui contiennent aussi beaucoup d’objets techniques. »

Max : « Exact Léo. Vous avez bien travaillé. Vous pouvez ranger vos affaires. Et n’oubliez pas d’apprendre votre leçon pour la prochaine séance. »

Séance suivante

Les caractères physiques

Vous savez tous qu’une espèce est un groupe d’individus qui se ressemblent et qui peuvent avoir une descendance féconde. Cela signifie que les petits pourront se reproduire à leur tour quand ils seront en âge de le faire. Vous avez remarqué que la définition d’espèce comprend deux parties : le critère de ressemblance et le critère de fécondité. Le critère de ressemblance fait appel aux caractères physiques des individus appartenant à l’espèce étudiée. Certains des caractères des individus sont communs à tous les individus de l’espèce. Mais d’autres sont des traits particuliers à un individus alors que d’autres encore se retrouvent dans des familles, des groupes… Nous allons apprendre à distinguer ces différents caractères et apprendre un peu de vocabulaire. C’est très utile le vocabulaire pour construire une réflexion.

Au passage nous allons commencer à réfléchir à la position de l’espèce humaine dans le règne animal. La première chose à faire est d’essayer de définir l’espèce humaine. Vous allez voir que ce n’est pas si facile qu’on le pense 🙂

Voilà pour la courte introduction au premier chapitre. Il est maintenant temps de nous mettre au travail.

Commencer le chapitre

La démarche de modélisation

Il arrive parfois qu’il est impossible d’expérimenter sur notre objet d’étude. Dans ce cas, la démarche expérimentale n’est pas possible. Prenons un exemple. Si nous voulons étudier la respiration de la souris, il est possible de proposer une expérience avec une souris (Cf. cours de 5ème). Nous pouvons donc suivre une démarche expérimentale. Mais si nous étudions les tremblements de Terre nous voyons tout de suite qu’il est impossible de faire rentrer la Terre dans le laboratoire pour réaliser une expérience. Suivre une démarche expérimentale n’est donc pas possible. Il faut réaliser une modélisation. Dans une modélisation l’objet d’étude est remplacé par un autre objet plus petit et on considère qu’il a les propriétés de l’objet d’étude. Cela parait compliqué mais c’est très simple. Comme je ne peux pas étudier un tremblement de Terre directement, nous allons prendre une règle (Cf. cours de 4ème) pour voir comment elle réagit. Ensuite, nous reviendrons à la réalité en disant que ce qui est arrivé à la règle est ce qui arrive à la Terre. Comme nous réalisons un modèle réduit, la démarche devient une démarche de modélisation. Vous comprendrez mieux quand nous aurons travaillé ensemble 🙂

Voici ce à quoi ressemble la démarche de modélisation.

La démarche de modélisation

La démarche de modélisation est l’une des méthodes employées par les scientifiques pour résoudre un problème scientifique.

Observation : On sait que…

On en tire un problème sous forme de question.

Hypothèse : Une hypothèse est une supposition tirée d’une observation et qui doit être vérifiée par une modélisation. Une hypothèse commence par ‘On suppose que…’

Modélisation :

Protocole : Le protocole est la description de la modélisation. On dit ce qu’on fait.

Résultats : On dit ce qu’on voit à la fin.

Interprétation des résultats : On explique les résultats.

Conclusion : On répond au problème.

Quelques remarques

1. Vous voyez que la démarche de modélisation ressemble beaucoup à la démarche expérimentale. Donc pas de panique ! Vous allez y arriver 🙂

2. Dans le protocole, il faut toujours dire ce que représente chacun des éléments du modèle. ‘Le machin bizarre représente le truc de la réalité. L’autre machin bizarre représente le bidule de la réalité.’ C’est important de le faire car cela vous aide à comprendre le modèle.

3. Vous avez peut-être remarqué que les résultats décrivent ce qu’il se passe dans le modèle. On dit ce qu’on voit dans le modèle. Dans l’interprétation on explique ce qu’il se passe dans le modèle. Puis, dans la conclusion, on revient à la réalité. En fait, c’est plus facile que dans la démarche expérimentale. Je répète : dans l’interprétation on parle du modèle alors que dans la conclusion on revient à la réalité.