Les réactions du corps à l’effort

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Pouvez-vous me faire le petit rappel ? »

Samuel : « On a fait des squats ! »

Léo : « et nos rythmes cardiaques et respiratoires ont augmenté. »

Samuel : « Notre température corporelle a augmenté aussi mais on ne l’a pas mesurée. »

Max : « Très bien. Nous noterons cela plus tard avec les définitions. Que se passerait-il si vous faisiez un effort physique sans avoir mangé depuis longtemps ? »

Léo : « On aurait pas d’énergie et on ne ferait pas de bonnes performances. »

Samuel : « Et on pourrait avoir la tête qui tourne. »

Léo : « Même avoir un malaise ! »

Samuel : « C’est la crise de pipoglycémie. Ça va mieux si on mange du sucre en attendant de faire un vrai repas. »

Max : « On dit hypoglycémie Samuel 🙂 Mais sinon vous avez raison. Pouvez-vous maintenant proposer une hypothèse sur les besoins des organes ? »

Léo : « Résumons. Pour faire une effort il faut respirer plus vite et plus fort et si on a pas mangé nos muscles n’ont pas d’énergie. »

Samuel : « Je sais ! Je suppose que pour fonctionner nos organes ont besoin de respirer et de se nourrir ! »

Léo : « On respire et on mange pour nos organes 🙂 « 

Max : « N’oubliez pas que ce ne sont que des hypothèses. Il faudra les vérifier. Pour le moment notons la leçon. »

LES BESOINS DES ORGANES

I. LES ADAPTATIONS DU CORPS À L’EFFORT.

Suite à un effort physique la fréquence cardiaque, la fréquence respiratoire et la température corporelle augmentent.

Ces observations font supposer que pour fonctionner un organe a besoin de respirer et de recevoir des nutriments.

La fréquence cardiaque est le nombre de battement du cœur par minutes. La fréquence respiratoire est le nombre d’inspirations par minute.

L’hypoglycémie est une baisse du taux de sucre dans le sang. Elle peut provoquer une faiblesse voire un malaise.

Un nutriment est une substance nutritive directement utilisable par les organes ou les cellules.

Repos Activité
Petizours Rythme cardiaque 200 bpm 400 bpm
Rythme respiratoire 400 inspirations / min 620 inspirations / min
Humain Rythme cardiaque 70 bpm 120 bpm
Rythme respiratoire 20 inspirations / min 40 inspirations / min

Max : « Voilà 🙂 Je peux rappeler votre hypothèse : si nous respirons et que nous nous nourrissons c’est pour satisfaire les besoins des organes. Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max ! »

Max : « Alors vous pouvez filer en récréation. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante

LES SÉISMES

Dans ce premier chapitre nous allons étudier les séismes ou tremblements de terre. Pour ce faire nous allons nous poser quelques questions et tenter d’y répondre. Et, comme vous le verrez, une réponse engendre une nouvelle question 🙂 Nous commencerons par observer les effets des séismes puis, petit à petit, nous remonterons à leur cause. Nous pourrons alors expliquer ce qu’il se passe lors d’un séisme.

Quelles sont les manifestations et les conséquences des séismes ?

I. MANIFESTATIONS ET CONSÉQUENCES DES SÉISMES.

Comment localiser un séisme ?

II.  LA LOCALISATION DES SÉISMES.

1. L’épicentre d’un séisme.

2. Le foyer d’un séisme.

Qu’est ce qu’une faille ?

III. LES FAILLES.

IV. L’ORIGINE DES SÉISMES.

Comment expliquer l’apparition d’une faille ?

1. L’origine des failles.

Comment expliquer l’apparition des ondes sismiques ?

2. L’origine des ondes sismiques.

Comment les séismes sont-ils répartis à la surface de la terre ?

V. LA RÉPARTITION MONDIALE DES SÉISMES.

Commencer le chapitre

LE VOLCANISME

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. Et puis dépêchez vous. Je voudrais vous montrer quelques films pour vous présenter le volcanisme. »

Samuel et Léo : « Bonjour monsieur Max ! »

Léo : « On va étudier le volcanisme ? Chouette alors ! »

Samuel : « Et on va regarder des vidéos ! »

Max : « Oui, quelques unes. Je compte sur vous pour être sages ! »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Alors commençons… »

Éruption du Mont Saint-Helens (Maurice et Katia Kraft)

Éruption du Mont Saint-Helens (version courte)

Léo : « Rholala ! La montagne a explosé d’un coup ! Boum la montagne ! »

Max :  » 🙂 Léo, tu devrais parler du volcan. »

Léo : « Oui oui ! Pardon monsieur Max ! Le volcan a explosé d’un coup ! Boum le volcan ! »

Samuel : « Moi je croyais qu’il y avait de la lave qui sortait d’un volcan. »

Léo : « Là il y en avait pas ! C’était… C’était comme des cendres qui formaient des nuages. »

Samuel : « Des nuages qui allaient très vite ! Vers le bas ou vers le haut. »

Léo : « Les cendres devaient être poussées par des gaz ! C’est pour ça que ça a explosé ! Il y avait plein de gaz dans le volcan et puis ils ont été libérés d’un coup quand ça a explosé et les cendres ont été projetées à toute vitesse ! »

Max : « Vous avez tout compris à ce premier type de volcan. Ce sont les volcans gris ou volcans explosifs. Regardons un peu mieux… »

Une nuée ardente

Léo : « Rhoooo ! »

Samuel : « C’est un nuage de cendres qui dévale la pente à toute vitesse ! »

Max : « C’est ce que les géologues appellent une nuée ardente. Une nuée ardente est un nuage de gaz et de cendres qui dévale les pentes du volcan à haute vitesse. Au départ, une nuée ardente peut dépasser 500 km/h et 500°C. »

Samuel : « Mais c’est très dangereux alors ! »

Max : « Oui Samuel, c’est extrêmement dangereux. Continuons… »

Un panache éruptif

Samuel : « Encore des cendres projetées à toute vitesse ! »

Max : « Oui, cette fois elles sont projetées verticalement et, en général, cela dure plusieurs jours, voire plusieurs semaines. C’est un panache éruptif. Un panache éruptif est constitué de cendres projetées verticalement par des gaz à haute vitesse. »

Léo : « Monsieur Max, jusqu’à quelle hauteur peuvent aller les cendres ? »

Max : « Pour le Saint Helens, elles ont atteint environ 20 km. Pour le Krakatoa elles ont atteint 85 km. »

Samuel : « Ah oui, quand même… »

Max : « Évidemment, elles se dispersent dans l’atmosphère petit à petit bien qu’une grande partie retombe rapidement au sol. Les cendres dispersées dans l’atmosphère font écran aux rayons du soleil. L’éruption du Pinatubo en 1991 a ainsi provoqué une baisse de la température moyenne sur terre de plus de 1°C pendant deux à trois ans. »

Samuel : « Mais il n’y a jamais de lave dans ces volcans gris ? »

Max : « Si, un peu. Elle coule très mal. On dit qu’elle est visqueuse. Quand elle sort du volcan elle peut former une aiguille de lave qui grandit de quelques centimètres par jour et qui finit pas s’effondrer. Voici un exemple à la montagne Pelée en 1903. »

Léo : « C’est de la lave qui sort comme ça ? »

Max : « Oui Léo. Je répète qu’elle est très visqueuse. On peut dire très pâteuse si vous voulez. »

Samuel : « Je ne voyais pas les volcans comme ça moi… »

Max : « Je vous ai donc appris quelque chose… Qui veut résumer ce que nous venons de voir ? »

Samuel et Léo : « Moi monsieur Max ! Moi ! »

Max :  » 🙂 Samuel, nous t’écoutons. »

Samuel : « Les volcans gris sont des volcans explosifs. Ils émettent de grandes quantités de gaz et de cendres sous forme de nuées ardentes et de panaches éruptifs. Ils peuvent aussi émettre un peu de lave visqueuse.« 

Max : « Très bien Samuel. Passons au second type de volcan… »

Éruption du Piton de la Fournaise, Île de la Réunion (France)

Éruption du Piton de la Fournaise, Île de la Réunion (France), le 15 septembre 2018.

Samuel : « Là ça ressemble plus à ce que j’imaginais pour un volcan. »

Léo : « Oui, il y a de la lave qui sort du cratère et qui forme de grandes coulées de lave. »

Samuel : « Mais je ne savais pas que ça bouillonnait comme ça dans le cratère. »

Max : « Ce sont les fontaines de lave. »

Léo : « C’est le gaz qui sort et qui éjecte des morceaux de lave monsieur Max ? »

Max : « Oui Léo mais nous parlerons plutôt de lambeaux de lave. Voulez-vous voir une autre fontaine de lave ? »

Samuel et Léo : « Oui monsieur Max ! »

Une fontaine de lave au Kilauea (Hawaï, USA) le 18 Mai 2018

Samuel : « C’est encore les gaz qui remontent et qui projettent les lambeaux de lave. »

Léo : « Et en remontant, les gaz entraînent la lave. Et ça fait des coulées de lave. »

Max : « Oui Léo. Je peux encore vous en montrer… »

Éruption du Kilauea (Hawaï, USA) le 6 juin 2018

Max : « Comme vous pouvez le voir, la lave coule vite. On dit qu’elle est fluide. En se refroidissant, elle commence à se solidifier et sa couleur s’assombrit. Elle coule aussi moins vite. Voici une vidéo qui montre une coulée de lave à deux kilomètres de son point de sortie. »

Éruption du Kilauea (Hawaï, USA) le 9 décembre 2011.

Léo : « Il y a comme une croûte durcie sur la coulée. »

Max : « Oui Léo. Pourrais-tu résumer ce que nous venons de voir avec ce second type de volcans ? Je précise que ce sont des volcans effusifs. »

Léo : « Oui monsieur Max. Ce sont les volcans rouges ou effusifs. Ils émettent de grandes quantités de lave fluide sous forme de fontaines de lave et de coulées de lave.« 

Max : « Très bien Léo. Nous reprendrons tout cela sous forme de leçon lors de la prochaine séance. Pour le moment je voudrais vous montrer un dernier film… »

Léo : « Hé ! Mais c’est sous l’eau ! »

Samuel : « Rholala ! »

Max : « Et oui 🙂 La lave se solidifie au contact de l’eau mais à l’intérieur elle est encore liquide et avance. Elle perce la croûte et avance mais sa surface se solidifie presque instantanément… Bien, ce sera suffisant pour aujourd’hui. Vous pouvez ranger vos affaires. Et revoyez bien ces films pour la prochaine fois ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits… »

Séance suivante

Des échanges gazeux respiratoires

LA RESPIRATION

Hypothèse : On suppose que, lorsqu’il respire, un être vivant prélève du dioxygène et rejette du dioxyde de carbone.

I. DES ÉCHANGES GAZEUX RESPIRATOIRES.

La respiration est un échange gazeux respiratoire entre un être vivant et son environnement. L’être vivant prélève du dioxygène dans son environnement et y rejette du dioxyde de carbone. (Dans l’eau les gaz sont dissous).

Pour vérifier qu’un être vivant respire il faut vérifier qu’il prélève du dioxygène et qu’il rejette du dioxyde de carbone.

Pour étudier la respiration on utilise un oxymètre (pour le dioxygène) et de l’eau de chaux (pour le dioxyde de carbone).

Max : « Quand vous aurez fini de noter vous pourrez ranger vos affaires et filer vous dégourdir les pattes. Ah ! Attendez ! J’ai trouvé un site qui vous permet de réviser tout ce que nous avons fait de façon simple et ludique. Je vous conseille de vous entraîner… »

Quelques exercices pour réviser

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir monsieur mes petits ! »

Séance suivante

La répartition des êtres vivants dans l’environnement

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Mes chers petits 🙂 Samuel, veux tu nous faire un petit rappel s’il te plaît ? »

Samuel : « Nous étudions les caractéristiques physiques de l’environnement. Ce sont des grandeurs qui se mesurent avec des appareils et qui s’expriment avec une unité. Par exemple la température se mesure avec un thermomètre et s’exprime en degrés Celsius. »

Max : « Très bien. Léo, peux-tu donner les deux autres exemples ? »

Léo : « Je peux monsieur Max. L’humidité se mesure avec un hygromètre et s’exprime en pourcentage. L’éclairement se mesure avec un luxmètre et s’exprime en Lux. Je peux ajouter que les caractéristiques physiques changent en fonction du temps et du lieu. »

Max : « Je vois que vous avez bien appris et que vous avez compris. Comme d’habitude 🙂 »

Léo : « Monsieur Max, j’ai une question ! »

Max : « Comme souvent. Vous avez souvent des questions et j’apprécie. »

Léo : « Merci monsieur Max. Connaissez-vous les cloportes ? »

Max : « Bien sûr Léo. Pourquoi cette question ? avant que tu répondes, je vous montre une courte vidéo de cloportes dans leur milieu de vie… »

 Vidéo : Les cloportes dans leur milieu de vie

Max : « Pourquoi cette question Léo ? »

Léo : « Je les observe toujours dans des endroits sombres et humides. C’est par hasard ? »

Max : « Qu’en pensez-vous ? »

Samuel : « Moi je pense que ce n’est pas pas hasard. Je pense qu’ils recherchent l’humidité et l’obscurité. »

Léo : « Tu penses mais tu n’est pas sûr ! »

Max : « C’est comme cela en science Léo. Tu as posé une question. Samuel propose une réponse. Savez-vous comment s’appelle une réponse dont on est pas sûrs et qu’il va falloir vérifier ? »

Samuel : « Ne serait-ce pas ce qu’on appelle une hypothèse ? »

Max : « Si Samuel. »

Samuel : « Alors j’ai fait une hypothèse moi ? »

Max : « A vrai dire, tu en as même fait deux 🙂 »

Samuel : « Comment allons-nous faire pour les vérifier ? »

Léo : « Je sais ! Nous allons faire des expériences ! »

Max : « Oui Léo. Que me proposez-vous ? »

Samuel : « Il faudrait leur laisser le choix entre un endroit sombre et un endroit éclairé. »

Léo : « On fait comme une grande boite. D’un côté, on laisse à la lumière et l’autre côté on met un couvercle comme ça l’éclairement sera faible. »

Max : « Vous venez de proposer un protocole. Que prévoit notre hypothèse ? »

Léo : « Si notre hypothèse est juste alors les cloportes iront du côté sombre. »

Max : « C’est exact 🙂 Ce que tu as dit Léo s’appelle la conséquence prévisible de l’hypothèse. Nous pourrions mettre en œuvre ce protocole mais je n’ai pas le matériel sous la patte. Regardons plutôt une courte vidéo. »

 

 

 

 

Max : « Léo, nous avons étudié les caractéristiques physiques de l’environnement il me semble ! »

Léo : « Oui, pardon monsieur Max. Sous le bois l’éclairement est faible. »

Samuel : « Et l’humidité est élevée ! » Léo : « Peut-être que les cloportes aiment quand l’éclairement est faible et que l’humidité est élevée ! »

Max : « Êtes-vous sûrs de ce que vient de dire Léo ? » Samuel : « Je pense comme lui mais je ne suis pas sûr. » Max : « Ce que vient de faire Léo c’est formuler une hypothèse. »

Léo : « Il faudrait vérifier, pour être sûrs ! »

Samuel : « En sciences il faut faire des expériences ! Si on faisait une expérience ? »

Max : « Bonne idée ! Mais à quoi ressemblerait cette expérience ? »

Samuel : « Mmmmm… On pourrait laisser le choix à un cloporte entre un endroit éclairé et un endroit sombre. Et puis on regarderait où il va. Si Léo a bon il devrait aller vers l’endroit sombre ! »

Léo : « Et on pourrait faire pareil avec un endroit humide et un endroit sec. Si le cloporte va vers le côté humide c’est qu’il aime l’humidité. »

Samuel : « et puis la température ! On fait un endroit à… Je sais pas moi : 20°C et puis un autre à 8°C et on regarde où il va ! »

Max : « Bravo mes petits ! Vous venez de donner trois protocoles ! Ce sont les descriptions de 3 expériences différentes. J’ai justement un petit logiciel… Voici le lien vers l’expérience qui permet de savoir si le cloporte recherche l’humidité ou non… »

Première expérience

Léo : « Rholala ! Quand on assèche un compartiment, les cloportes vont tout de suite dans l’autre ! »

Samuel : « Alors que dans le témoin ils se promènent tranquillement un peu partout ! »

Max : « Vous venez de formuler les résultats de la première expérience. Comment expliquez-vous ces résultats ? »

Léo : « Ben… On peut dire que les cloportes recherchent l’humidité. »

Max : « Très bien Léo ! Tu viens d’interpréter les résultats. Revenons à la question que tu avais posée au départ, Léo. »

Léo : « Je ne me souviens plus exactement de ma question. Mais c’était… Comment les animaux se répartissent-ils dans l’environnement ? »

Max : « Et avez-vous la réponse maintenant ? »

Samuel : « Ouiiiii ! On sait maintenant que les animaux se répartissent dans l’environnement en fonction des caractéristiques physiques ! »

Max : « Samuel, tu viens de formuler la conclusion de notre expérience. Quelle séance ! Vous avez découvert deux choses très importantes. La première est que les êtres vivants se répartissent dans l’environnement en fonction des caractéristiques physiques. La seconde est une méthode que nous allons beaucoup utiliser. Il s’agit de la démarche expérimentale. Je vous conseille d’aller lire l’article que j’ai déjà écrit à ce sujet : La démarche expérimentale. Pour le moment, notons la leçon. »

IV. LA RÉPARTITION DES ÊTRES VIVANTS DANS L’ENVIRONNEMENT.

Les êtres vivants ne sont pas répartis au hasard dans l’environnement. Ils se répartissent en fonction des caractéristiques physiques de l’environnement.

Certains êtres vivants recherchent l’humidité (cloportes, mousses, limaces…) D’autres s’exposent au soleil (gendarmes, lézards des murailles…)

Les animaux se répartissent également dans l’environnement en fonction de leurs besoins en nourriture.

Un animal diurne est un animal actif le jour.

Un animal nocturne est un animal actif la nuit.

Max : « Vous avez bien travaillé aujourd’hui. Si vous voulez, vous pourrez continuer à expérimenter pour trouver les préférences du cloporte. Je vous donne les liens vers les deux autres expériences. Et deux petites questions. Vous pourrez me donner vos réponses dans les commentaires. N’oubliez pas de laisser votre prénom et votre classe 🙂 Allez, dehors mes petits ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir. Et n’oubliez pas de bien revoir vos leçons. »

Expérience 2

Les cloportes préfèrent-ils une température élevée ou une température basse ?

Expérience 3

Les cloportes recherchent-ils l’obscurité ou un éclairement important ?

Une petite vidéo avec des expériences

Séance suivante

Les reliefs terrestres

Max : « Bien, nous sommes là pour étudier brièvement les reliefs terrestres. Commençons par une carte de la surface terrestre… »

Léo : « Attendez monsieur Max ! Pouvez-vous nous dire ce qu’est un relief ? »

Max : « Bien sûr Léo. En géographie le mot relief désigne l’ensemble des irrégularités (en creux ou en saillie) qui caractérisent la surface de la Terre. »

Léo : « Merci monsieur Max. »

Samuel : « Il y a les plaines et les montagnes ! »

Max : « Oui Samuel, mais pas seulement. Nous allons étudier cela. Regardez cette carte. »

Carte des reliefs terrestres

Léo : « Oulala ! On voit le fond des océans ! »

Samuel : « C’est comme s’il y avait pas d’eau dans les océans ! »

Max : « Oui, j’aime beaucoup cette carte. La réalisation de ce genre de carte n’est possible que depuis les années 1980. Avant cela, on connaissait mieux la surface de la Lune que la surface du fond des océans. Mais avant d’étudier les fonds océaniques, faisons quelques rappels concernant les terres émergées. Pour faire simple, il y a de vastes plaines peu élevées et des chaînes de montagnes. »

Léo : « Monsieur Max, d’après cette carte, on voit qu’il y a beaucoup plus d’océans que de continents à la surface de la Terre. Auriez-vous les pourcentages ? »

Max : « Oui. J’allais l’oublier. 79% de la surface de la Terre est occupée par les océans. »

Samuel : « Cela fait environ les 4/5. Ça fait beaucoup. »

Max : « Passons aux reliefs sous-marins… »

Samuel : « Monsieur Max, à quoi correspondent les espèces de hachures au fond des océans ? »

Max : « Je vais vous montrer des coupes des océans. On parle de profils topographiques. Les voici… »

Profils topographiques de l’océan Atlantique (haut et milieu) et de l’océan Pacifique).

Léo : « C’est pas tout plat ! »

Samuel : « Il y a les îles… Et puis des grands trous dans le Pacifique. »

Léo : « Et au milieu de l’Atlantique il y a comme des montagnes. C’est écrit dorsale. Ça doit être ça les hachures sur la carte du début. »

Max : « Bien observé 🙂 Il y a effectivement de nombreux reliefs au fond des océans. Léo tu as bien identifié les dorsales. Je vous donnerai une définition plus tard. Samuel, tu te doutes que les trous ne s’appellent pas comme cela. Mais tu as bien observé. Un autre document va vous permettre de mieux comprendre. Du moins, je l’espère… »

Profil topographique synthétique d’un océan imaginaire

Samuel : « Oui, je vois mieux comme ça. Les grands trous sont des fosses. »

Léo : « Monsieur Max, quelle est la profondeur moyenne des plaines abyssales ? »

Max : « J’ai encore un document pour vous… »

Léo : « J’ai ma réponse ! 3682 mètres de profondeur en moyenne pour les océans ! »

Samuel : « Je savais pas ça moi… »

Max : « Qu’est ce que tu ne savais pas Samuel ? »

Samuel : « La plus grande montagne du monde ! Je croyais que c’était l’Everest mais c’est pas vrai ! C’est l’île d’Hawaï ! »

Max : « Eh oui ! Le volcan culmine à 4207 mètres au-dessus du niveau de la mer. Mais à cet endroit, les fonds océaniques sont à environ 5000 mètres de profondeur. Le total fait près de 10 kilomètres, bien plus que l’Everest. Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max. »

Max : « Bien. Ah ! J’oubliais. Voici un document qui montre la répartition des altitudes des continents et des profondeurs des océans… »

Léo : « Monsieur Max, il va falloir apprendre tout ça ? »

Max : « Ce serait bien… Mais ce n’est pas au programme des évaluations. A part peut-être les définitions de dorsale et de fosse. Je les donnerai dans le cours mais elles sont déjà dans le vocabulaire. « 

Léo : « Ce n’est pas difficile. Une fosse c’est une longue dépression étroite au fond des océans. »

Samuel : « Et une dorsale est une chaîne de montagnes qui se trouve au fond des océans. »

Max :  » 🙂 Avez vous des questions mes petits ? »

Léo : « Oui monsieur Max. Quel est le diamètre de la Terre ? »

Max : « Le rayon moyen de la Terre est d’environ 6370 km. »

Samuel : « 6370 km ! Et les océans qui nous paraissent profonds ne font que 3,6 km  en moyenne ! »

Léo : « De tête ça fait 0,05% du rayon terrestre. »

Samuel : « Autant dire qu’il y a qu’une très fine couche d’eau à la surface de la Terre ! »

Retour à la répartition mondiale des séismes

Séance suivante

La respiration des végétaux

Max : « Bonjour à tous, enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Il me semble que c’est Léo qui a fait le dernier petit résumé. Samuel, c’est donc à ton tour. Mais tu peux faire simple si tu veux. « 

Samuel :  » Simple ? D’accord 🙂 La respiration est l’action de prélever du dioxygène dans l’environnement et d’y rejeter du dioxyde de carbone. La respiration peut s’étudier grâce à un oxymètre et de l’eau de chaux. »

Max : « Très bien Samuel. Léo, la suite s’il te plaît. »

Samuel : « Les animaux qui respirent dans l’air ont soit des poumons, soit des trachées alors que les animaux qui respirent dans l’eau ont des branchies. Parfois ils réalisent leurs échanges gazeux au travers de leur peau. Et puis il y a des animaux qui ont des comportements respiratoires particuliers, comme l’argyronète. »

Max : « Très bien ! Bravo ! »

Samuel : « Monsieur Max ! J’ai une question ! »

Max : « Je t’écoute Samuel. »

Samuel : « Monsieur Max, quels sont les organes respiratoires des végétaux ? »

Max : « Très bonne question Samuel. C’est précisément ce que nous allons étudier aujourd’hui. Tiens, je vais vous donner une photographie d’une observation au microscope d’épiderme de feuille. Je ne sais pas encore laquelle. Puis vous en ferez un dessin. »

Léo : « On ne réalise pas la préparation microscopique nous mêmes monsieur Max ? »

Max : « Nous pourrions. Mais pas cette fois. Où sont donc passés mes documents… Les voilà ! Tenez ! J’espère que vous vous souvenez des consignes pour réaliser un dessin et sa légende. »

Samuel : « Moi je m’en souviens ! »

Léo : « Moi aussi ! »

Max : « C’est ce que nous allons voir 🙂 Au travail ! »

Max : « Ah ! J’ai failli oublié. Le grossissement est de 400 fois et vous pouvez légender avec ce que nous avons vu l’an dernier. Ce sont des cellules. Elles ont donc une membrane, un cytoplasme et un noyau. »

Léo : « Merci monsieur Max. »

Un peu plus tard…

Samuel et Léo : « Fini ! »

Max : « Montrez moi ça… C’est très bien ça Léo. Samuel, ton dessin est très beau lui aussi. Je les publierai plus tard. « 

Samuel : « Monsieur Max, l’an dernier nous avons vu l’épiderme d’oignon. Il y avait des cellules allongées comme celles que nous avons dessinées. Mais il n’y avait pas les drôles de machins. C’est quoi ? »

Max : « Bonne question 🙂 Ce sont des stomates. Ils sont constitués de deux cellules de garde. Je vous fais un petit dessin au tableau… »

Dessin d’un stomate observé au microscope

Max : « Comme vous pouvez le voir, les stomates sont constitués de deux cellules de garde qui délimitent une ouverture appelée ostiole. Quand les cellules gonflent l’ostiole se ferme. Quand les cellules se dégonflent, l’ostiole s’ouvre. »

Léo : « C’est par là que les gaz respiratoires passent monsieur Max ? »

Max : « Oui Léo. Nous pouvons noter la leçon. »

III. LES STOMATES ET LA RESPIRATION DES VÉGÉTAUX.

L’observation au microscope optique d’épiderme de feuille montre des structures appelées stomates. Les stomates sont constitués de deux cellules de garde qui délimitent un ostiole. Les échanges gazeux entre la plante et l’environnement se font par les stomates.

Max : « Bien. Nous avons terminé la leçon et le chapitre. Si vous n’avez pas de question vous pouvez ranger vos affaires et sortir vous amuser en récréation. »

Samuel et Léo : « Merci monsieur Max. Au revoir monsieur Max ! »

 

Séance suivante

Les organes respiratoires

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Mmmmm… Léo, c’est toi qui vas faire le petit rappel aujourd’hui. »

Léo : »Bien monsieur Max. Nous avons vu que le respiration est un échange de gaz entre un être vivant et son environnement. L’être vivant prélève du dioxygène et rejette du dioxyde de carbone. Les échanges de dioxygène peuvent être mesurés grâce à un oxymètre. C’est un appareil de mesure du dioxygène. Et les échanges de dioxyde de carbone peuvent être mis en évidence par l’eau de chaux qui est un liquide incolore qui blanchit en présence de dioxyde de carbone. »

Max : « Très bien Léo. Samuel, as-tu quelque chose à ajouter. »

Samuel : « On pourrait préciser que dans l’eau, les gaz sont dissous. Et puis nous avons revu deux méthodes : la démarche expérimentale et le commentaire de graphique. »

Max : « Très bien ! Nous pouvons aborder le problème suivant. Vous l’aviez d’ailleurs posé en début d’année… »

Samuel : « Je sais ! On pourrait se demander : Avec quoi les animaux respirent-ils ?« 

Max : « Exact Samuel ! Vous allez étudier cela tout seuls grâce aux documents de votre manuel, aux pages 18 à 21. Je vous demande de compléter le tableau que je vais vous donner, puis vous rédigerez un court texte qui parle des organes respiratoires. »

Samuel et Léo : « Bien monsieur Max. »

Max : « Voici le tableau… »

Léo : « Monsieur Max, les milieux de vie et de respiration sont bien l’air et l’eau ? »

Max : « Oui Léo, un animal vit soit dans l’air soit dans l’eau. Et il respire dans l’air ou dans l’eau. »

Samuel : « Et les réponses sont dans les documents ? »

Max : « Oui Samuel. Au travail maintenant ! »

Max : « Alors ? Ça avance ? »

Samuel : « C’est terminé monsieur Max ! »

Max : « Montrez-moi… Mais c’est très bien tout ça ! Bravo mes petits. Je donne quand même la correction… »

Max : « Passons au petit texte. Léo, peux-tu lire ce que tu as écrit ? »

Léo : « Bien sûr monsieur Max. D’après le tableau nous pouvons voir que les organes qui permettent de respirer dans l’air sont les poumons et les trachées alors que ceux qui permettent de respirer dans l’eau sont les branchies. »

Max : « Très bien Léo. J’ajouterai que la peau permet parfois aux animaux aquatiques de respirer dans l’eau. Samuel, as-tu ajouté quelque chose ? »

Samuel : « Oui. Nous voyons aussi que certains animaux ne respirent pas dans leur milieu de vie. ils doivent alors adopter des comportements respiratoires particuliers. »

Max :  « Bravo Samuel ! Et très bien à toi Léo. J’ai noté l’essentiel au tableau. Prenez vos cahiers. Nous allons noter la leçon. »

Quels sont les organes qui permettent de respirer ?

II. LES ORGANES RESPIRATOIRES DES ANIMAUX.

Les organes qui permettent de respirer dans l’air sont les poumons et les trachées.

Les organes qui permettent de respirer sous l’eau sont les branchies et parfois la peau.

Les animaux qui ne respirent pas dans leur milieu de vie doivent adopter des comportements respiratoires particuliers. Certains remontent à la surface pour respirer (dauphins, limnées…). D’autres plongent avec une réserve d’air (Dytique, argyronète…). Des animaux à branchies peuvent survivre dans l’air en gardant leurs branchies humides.

Max : « Vous avez bien travaillé et il nous reste un peu de temps. Je vais vous montrer une petite vidéo… Soyez sages 🙂 « 

Léo : « Une araignée qui vit sous l’eau ! »

Samuel : « Je savais même pas que ça existait ! »

Léo : « Ben moi non plus. Elle respire dans l’air mais sous l’eau 🙂 « 

Samuel : « C’est rigolo 🙂 « 

Max : « Oui 🙂 Bien, cette fois la leçon est terminée. Vous pouvez ranger vos affaires et filer en récréation. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : »Au revoir mes petits. »

Séance suivante

La fécondation à l’origine d’un programme génétique unique et nouveau

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Léo, c’est à ton tour de faire le petit rappel aujourd’hui. La dernière séance uniquement. »

Léo : « Lors de la dernière séance nous avons vu que les cellules-souches peuvent donner des gamètes génétiquement différents à cause de la répartition aléatoire des chromosomes lors de la première multiplication de méiose. »

Max : « Excellent résumé ! Bravo Léo ! Aujourd’hui nous allons parler de la fécondation. »

Samuel : « La fécondation est la rencontre suivie de la fusion d’un ovule et d’un spermatozoïde. La fécondation donne naissance à une cellule-œuf à l’origine d’un nouvel individu. »

Max : « Oui Samuel. »

Léo : « Et nous savons que les gamètes ont 23 chromosomes, un seul de chaque paire. »

Samuel : « Alors lors de la fécondation, chaque gamète apporte un chromosome et les paires sont reconstituées. »

Léo : « Si le spermatozoïde contient un chromosome sexuel X l’individu sera de sexe féminin. »

Samuel : « Si le spermatozoïde contient un chromosome sexuel Y l’individu sera de sexe masculin. »

Max : « Vous n’avez plus besoin de moi mes petits 🙂 Et si nous ajoutions les allèles à cette histoire ? »

Léo : « Oulala ! »

Samuel : « Ça peut être compliqué… »

Max : « Mais vous allez y arriver. Commençons par un exemple simple. Imaginons un papa de groupe sanguin A (avec les allèles A et O) et une maman de groupe B (avec les allèles B et O). Quels pourraient-être les groupes sanguins des enfants ? »

Léo : « Il faut d’abord trouver les allèles présents dans les gamètes. »

Samuel : « Puis faire un tableau pour la fécondation. »

Léo : « Dans lequel on reconstitue les paires de chromosomes. »

Samuel : « Puis à partir des allèles on retrouve le caractère exprimé chez l’enfant. »

Max : « Vous avez compris la méthode. Au travail ! »

Un peu plus tard…

Léo : « C’était facile 🙂 « 

Samuel : « De la rigolade ! »

Max : « Alors au tableau Samuel ! »

Samuel : « Oui monsieur Max. Le papa peut faire des spermatozoïdes qui contiennent soit A soit O. Les ovules de la maman peuvent contenir soit B soit O. Ensuite on fait le tableau de fécondation.

Ovule

Spermatozoïde

B O
A A/B

[AB]

A/O

[A]

O B/O

[B]

O/O

[O]

Grâce à ce tableau nous pouvons voir que les enfants pourraient être des groupes AB, A, B ou O. »

Max : « Bravo Samuel ! Faisons plus difficile. Ajoutons le groupe rhésus. Le papa est rhésus positif (allèles Rh+ et Rh-) et la mamn et rhésus négatif. »

Léo : « Monsieur Max, puis-je aller le faire directement au tableau ? »

Max : « Oui Léo. »

Léo : « Alors… Le papa peut faire des spermatozoïdes… Rh+/A ; Rh-/A ; Rh+/O et Rh+/O. Pour la maman c’est plus simple. Les ovules peuvent contenir Rh-/B et Rh-/O. Puis-je me dispenser du tableau monsieur Max ? »

Max : « Je ne préfère pas Léo. »

Léo : « Bien monsieur Max. Je le fais alors…

On voit donc que ces parents pourraient avoir 8 enfants génétiquement différents. »

Max : « Excellent travail Léo. Bien nous avons terminé. »

Léo : « Monsieur Max, si chaque parent peut produire plus de 8 millions de gamètes génétiquement différents, on peut penser qu’au total il pourrait avoir 64 mille milliards d’enfants génétiquement différents. C’est ça ? »

Max : « Oui Léo. Certains ne différeraient que par un caractère mais ils seraient quand même différents. »

Samuel  : « Nous allons terminer le cours monsieur Max ? »

Max : « Oui, puis je vous ferai un petit bilan de la transmission de l’information génétique. Prenez vos cahiers et notez. »

V. FÉCONDATION ET ALLÈLES.

Lors de la fécondation, un spermatozoïde pris au hasard parmi les millions produits par le père rencontre et fusionne avec un ovule pris au hasard parmi les millions produits par la mère.

Lors de la fécondation, les paires de chromosomes sont reconstituées, chaque gamètes apportant un chromosome de chacune des paires. C’est le spermatozoïde qui fixe le sexe de l’individu.

Lors de la fécondation, chaque gamète apporte ses allèles provenant du parent. Un couple pourrait avoir plus d’enfants génétiquement différents qu’il y a eu d’êtres humains sur terre depuis l’apparition de l’espèce humaine.

Chaque enfant reçoit donc une partie de son patrimoine génétique de son père, une autre de sa mère. Chaque programme génétique est unique et nouveau.

Séance suivante

Un exercice

Max : « Bonjour à tous ! enlevez vos blousons, asseyez vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 Commençons par notre petit rappel habituel. Samuel, veux-tu bien nous parler des caractéristiques physiques de l’environnement s’il te plaît. »

Samuel : « Bien sûr monsieur Max ! C’est facile ! Une caractéristique de l’environnement est une grandeur qui se mesure avec un appareil et qui s’exprime avec une unité. Comme exemples nous avons vu la température, l’humidité et l’éclairement. »

Max : « Très bien Samuel. Léo, peux-tu donner les appareils et les unités qui permettent de mesurer et d’exprimer ces grandeurs s’il te plaît ? »

Léo : « Je peux 🙂 La température se mesure avec un thermomètre et s’exprime en degrés Celsius. L’humidité de mesure avec un hygromètre et s’exprime en pourcent. L’éclairement se mesure avec un luxmètre et s’exprime en Lux. »

Max : « Bravo mes petits ! Aujourd’hui nous allons étudier ça de plus près.  Je vais vous donner un document qui représente deux environnement. Il va falloir les identifier puis nous regarderons les résultats des mesures réalisées pour nos trois grandeurs. Ce sera à vous de les identifier. Puis je vous demanderai de comparer ces grandeurs dans les deux environnements. Mais pour commencer voici le document… »

Samuel : « A droite il y a une prairie ! Et à gauche c’est une forêt ! »

Max : « Oui Samuel 🙂 « 

Léo : « Et puis, de haut en bas, les grandeurs sont : l’éclairement, la température et l’humidité. »

Max : « Nous allons apprendre à comparer les valeurs d’un grandeur. Quels signes mathématiques utilisez-vous pour comparer ? »

Samuel : « Les signes ‘inférieur à’, ‘supérieur à’ ou ‘égal’. Ils notent <, > et = »

Max : « Très bien encore une fois Samuel. Je vous donne un exemple de ce qu’il faut comparer. Pouvez vous comparer l’éclairement dans la forêt à l’éclairement dans la prairie ? »

Léo : « Je peux expliquer monsieur Max ? »

Max : « Bien sûr Léo. »

Léo : « Dans la forêt, l’éclairement est de 150 Lux alors que dans la prairie il est de 30 000 Lux. 150 est inférieur à 30 000. Alors je peux dire que l’éclairement dans la forêt est inférieur à l’éclairement dans la prairie. »

Max : « Très bien Léo. Samuel, veux tu comparer la température dans la forêt à la température dans la prairie ? »

Samuel : « Je veux bien 🙂 Dans la forêt il fait 17°C et dans la prairie il fait 24°C. 17 est inférieur à 24. La température dans la forêt est inférieure à la température dans la prairie. »

Max : « Bravo ! Léo, tu peux comparer les humidités s’il te plaît ? »

Léo : « Dans la forêt, l’humidité est de 85%. Dans la prairie, elle est de 50%. 85 est supérieur à 50. L’humidité dans la forêt est supérieure à l’humidité dans la prairie. »

Max : « Très bien ! Bravo ! Vous savez maintenant comparer des grandeurs. Que retenez-vous de ce petit exercice ? »

Samuel : « Que c’est facile de comparer ! »

Max : « Oui Samuel 🙂 « 

Léo : « Avec ce petit exercice, on peut voir que les caractéristiques de l’environnement ne sont pas les mêmes dans des environnement différents au même moment. »

Samuel : « On peut dire que les caractéristiques de l’environnement dépendent du lieu. »

Max : « Très bien mes petits ! Nous pourrions montrer que les caractéristiques physiques de l’environnement dépendent aussi du temps qui passe en un même lieu. »

Samuel : « Ben oui ! On le savait déjà ! »

Max : « Alors vous pouvez sortir vous dégourdir les pattes ! »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits ! »

Séance suivante