Blog

Les reliefs terrestres

Max : « Bien, nous sommes là pour étudier brièvement les reliefs terrestres. Commençons par une carte de la surface terrestre… »

Léo : « Attendez monsieur Max ! Pouvez-vous nous dire ce qu’est un relief ? »

Max : « Bien sûr Léo. En géographie le mot relief désigne l’ensemble des irrégularités (en creux ou en saillie) qui caractérisent la surface de la Terre. »

Léo : « Merci monsieur Max. »

Samuel : « Il y a les plaines et les montagnes ! »

Max : « Oui Samuel, mais pas seulement. Nous allons étudier cela. Regardez cette carte. »

Carte des reliefs terrestres

Léo : « Oulala ! On voit le fond des océans ! »

Samuel : « C’est comme s’il y avait pas d’eau dans les océans ! »

Max : « Oui, j’aime beaucoup cette carte. La réalisation de ce genre de carte n’est possible que depuis les années 1980. Avant cela, on connaissait mieux la surface de la Lune que la surface du fond des océans. Mais avant d’étudier les fonds océaniques, faisons quelques rappels concernant les terres émergées. Pour faire simple, il y a de vastes plaines peu élevées et des chaînes de montagnes. »

Léo : « Monsieur Max, d’après cette carte, on voit qu’il y a beaucoup plus d’océans que de continents à la surface de la Terre. Auriez-vous les pourcentages ? »

Max : « Oui. J’allais l’oublier. 79% de la surface de la Terre est occupée par les océans. »

Samuel : « Cela fait environ les 4/5. Ça fait beaucoup. »

Max : « Passons aux reliefs sous-marins… »

Samuel : « Monsieur Max, à quoi correspondent les espèces de hachures au fond des océans ? »

Max : « Je vais vous montrer des coupes des océans. On parle de profils topographiques. Les voici… »

Profils topographiques de l’océan Atlantique (haut et milieu) et de l’océan Pacifique).

Léo : « C’est pas tout plat ! »

Samuel : « Il y a les îles… Et puis des grands trous dans le Pacifique. »

Léo : « Et au milieu de l’Atlantique il y a comme des montagnes. C’est écrit dorsale. Ça doit être ça les hachures sur la carte du début. »

Max : « Bien observé 🙂 Il y a effectivement de nombreux reliefs au fond des océans. Léo tu as bien identifié les dorsales. Je vous donnerai une définition plus tard. Samuel, tu te doutes que les trous ne s’appellent pas comme cela. Mais tu as bien observé. Un autre document va vous permettre de mieux comprendre. Du moins, je l’espère… »

Profil topographique synthétique d’un océan imaginaire

Samuel : « Oui, je vois mieux comme ça. Les grands trous sont des fosses. »

Léo : « Monsieur Max, quelle est la profondeur moyenne des plaines abyssales ? »

Max : « J’ai encore un document pour vous… »

Léo : « J’ai ma réponse ! 3682 mètres de profondeur en moyenne pour les océans ! »

Samuel : « Je savais pas ça moi… »

Max : « Qu’est ce que tu ne savais pas Samuel ? »

Samuel : « La plus grande montagne du monde ! Je croyais que c’était l’Everest mais c’est pas vrai ! C’est l’île d’Hawaï ! »

Max : « Eh oui ! Le volcan culmine à 4207 mètres au-dessus du niveau de la mer. Mais à cet endroit, les fonds océaniques sont à environ 5000 mètres de profondeur. Le total fait près de 10 kilomètres, bien plus que l’Everest. Avez-vous des questions ? »

Samuel et Léo : « Non monsieur Max. »

Max : « Bien. Ah ! J’oubliais. Voici un document qui montre la répartition des altitudes des continents et des profondeurs des océans… »

Léo : « Monsieur Max, il va falloir apprendre tout ça ? »

Max : « Ce serait bien… Mais ce n’est pas au programme des évaluations. A part peut-être les définitions de dorsale et de fosse. Je les donnerai dans le cours mais elles sont déjà dans le vocabulaire. « 

Léo : « Ce n’est pas difficile. Une fosse c’est une longue dépression étroite au fond des océans. »

Samuel : « Et une dorsale est une chaîne de montagnes qui se trouve au fond des océans. »

Max :  » 🙂 Avez vous des questions mes petits ? »

Léo : « Oui monsieur Max. Quel est le diamètre de la Terre ? »

Max : « Le rayon moyen de la Terre est d’environ 6370 km. »

Samuel : « 6370 km ! Et les océans qui nous paraissent profonds ne font que 3,6 km  en moyenne ! »

Léo : « De tête ça fait 0,05% du rayon terrestre. »

Samuel : « Autant dire qu’il y a qu’une très fine couche d’eau à la surface de la Terre ! »

Retour à la répartition mondiale des séismes

Séance suivante

La répartition mondiale des séismes

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour mes petits 🙂 »

Léo : « Monsieur Max, j’ai une question ! J’ai remarqué que les séismes avaient lieu un peu toujours aux mêmes endroits. Le Japon, le Pérou, Haïti… Où ont lieu les tremblements de Terre ? »

Max : « Bonne question Léo 🙂 C’est ce que nous allons étudier aujourd’hui. Plus précisément, la question du jour est : ‘Comment les tremblements de terre sont-ils répartis à la surface de la Terre ?‘ »

Léo (à Samuel) : « Je pose des bonnes questions moi. »

Samuel (à Léo) : « Moi aussi je pose des bonnes questions ! »

Max : « Vous posez tous les deux de bonnes questions. Ne vous jalousez pas ! Cette question est vraiment intéressante et en soulève d’autres auxquelles nous répondrons plus tard. Il va falloir que vous soyez patients pour avoir les réponses. Et puis, il vous manque quelques connaissances. Il va donc être nécessaire de faire une parenthèse sur les reliefs terrestres avant de faire la leçon. Mais rassurez-vous, tout ce que nous allons voir est à votre portée. Bien, commençons par une observation. Cette carte présente la répartition mondiale des séismes. »

 

Carte de répartition mondiale des séismes

Samuel : « Ah ben oui… Il y en a pas partout des tremblements de terre. »

Léo : « Ben non. On voit qu’ils sont concentrés dans certaines zones alors que dans d’autres zones il n’y en a pas du tout ! »

Samuel : « Monsieur Max, à quoi correspondent les zones où on observe des tremblements de terre ? »

Max : « C’est là qu’intervient la petite parenthèse sur les reliefs terrestres… »

Lien vers la petit parenthèse

Max : « Alors, vous avez bien suivi la petite parenthèse ? »

Samuel et Léo : « Oui monsieur Max ! »

Max : « Alors revenons à nos séismes… Je vous redonne les deux documents les plus importants… »

Carte de répartition des séismes

Carte des reliefs terrestres

Léo : « Il y a des tremblements de terre au niveau des dorsales ! »

Samuel : « Et puis le long des fosses ! »

Léo : « Et… Mais on voit pas bien… Il me semble qu’il y a en a aussi dans les chaînes de montagnes… »

Max : « Exact ! Vous avez trouvé dans quels contextes géodynamiques on trouve des séismes. Vous souvenez-vous des mouvements qui accompagnent les failles ? »

Samuel :  » Moi monsieur Max ! Je sais ! Moi ! Moi ! »

Max : « Je t’écoute Samuel 🙂 »

Samuel : « Il y a les mouvements de divergence, de convergence et de coulissement. »

Léo : « Quand ça s’écarte, quand ça se rapproche et quand ça glisse l’un contre l’autre. »

Max : « Merci d’avoir traduit Léo 🙂 Regardons maintenant une autre carte… »

Léo : « Mmmm… Alors au niveau des dorsales et des chaînes de montagnes il y a des mouvements de convergence… »

Samuel : « Et au niveau des dorsales on observe des mouvements de divergence. »

Max : « Excellent ! Votre cerveau fonctionne t-il encore ? »

Samuel et Léo : « Oui monsieur Max !!! »

Max : « Alors voici un dernier document… »

Léo : « Oulala ! Tout ça de séismes ! »

Samuel : « Léo, tu as vu ? Il y a trois bandes parallèles ! »

Léo : « A quoi ça correspond ? »

Samuel : « On a qu’à regarder la légende ! »

Léo : « Ben oui 🙂 Alors… Ça représente la profondeur des foyers. En jaune ils sont à moins de 70 km. En vert, ils se situent entre 70 et 350 km et en rouge ils sont à plus de 700 km de profondeur. »

Samuel : « 700 km !!! Rholala !!! »

Léo : « Monsieur Max, à quelle profondeur ont lieu les séismes sous les dorsales et les chaînes de montagnes ? »

Max : « En général les foyers se trouvent à moins de 70 km de profondeur. Voilà, vous savez tous 🙂 Nous pouvons rédiger la leçon. Prenez vos cahiers et notez. »

V. LA RÉPARTITION MONDIALE DES SÉISMES.

Les séismes ne sont pas répartis au hasard à la surface de la Terre. On les observe dans des reliefs particuliers :

– les chaînes de montagnes (convergence et foyers peu profonds) ;

– les fosses océaniques (convergence et foyers peu profonds à très profonds) ;

– les dorsales océaniques (divergence et foyers peu profonds).

Les fosses océaniques sont des dépressions allongées et étroites en bordure de continents ou d’arcs insulaires.

Les dorsales océaniques sont des montagnes allongées qui s’étirent sur 80 000 km au fond des océans. (On y observe un important volcanisme).

Max : « Vous avez bien travaillé mes petits. Vous avez bien mérité votre récréation. Vous pouvez filer. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir ! Et n’oubliez pas d’apprendre vos leçons. »

Séance suivante

Le support de l’information génétique

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Alors… Le petit rappel, qui veut le faire ? »

Samuel et Léo : « Moi monsieur Max ! »

Max : « Quel enthousiasme ! Et quel choix douloureux… Samuel, nous t’écoutons. »

Samuel : « Nous avons vu qu’il existe une information génétique dans la cellule-œuf. Elle permet à l’individu de se construire puisqu’elle code pour ses caractères héréditaires et leurs variations individuelles. »

Max : « Oui Samuel. Léo, tu prends la suite s’il te plaît. »

Léo : « Des expériences de transfert de noyau ont montré que cette information génétique est localisée dans le noyau des cellules. »

Max : « Très bien. Comme d’habitude. »

Léo : « Monsieur Max, j’ai une question ! »

Max : « Je t’écoute Léo. »

Léo : « Monsieur Max, une information ça se touche pas. C’est pas matériel. Il faut un support pour la mettre dessus. Comme… Comme une histoire qu’on imprime sur les feuilles d’un livre. Quelle est le support de l’information génétique ? »

Max : « Excellente question Léo ! C’est exactement ce que j’avais prévu de vous faire. Je la répète : quel est le support de l’information génétique ? Sachant que cette information se trouve dans le noyau des cellules, comment pourrions-nous répondre à notre question ? « 

Samuel : « On pourrait observer les noyaux de cellules au microscope ! »

Max : « Très bonne idée Samuel ! »

Léo : « Nous allons utiliser le microscope monsieur Max ? »

Max : « Oui. Je vais vous laisser observer différents types cellulaires puis je vous donnerai un document. »

Un peu plus tard

Samuel (à Léo) : « C’était bien le microscope 🙂 »

Max : « Un peu de calme ! Chuuuut ! Bien, voici le document que je vous avais annoncé… »

Photographie de cellules de racine d’ail observées au microscope

Samuel : « Ça ressemble à ce qu’on a observé avec le microscope ! »

Max : « Oui Samuel. Alors ? Que voyez-vous ? »

Léo : « Il y a des machins qui ont été colorés. D’après la légende, ce sont les chromosomes. »

Max : « Tu éviteras de dire des ‘machins‘ Léo s’il te plaît. Disons que des éléments situés dans le noyau ont pris la couleur. Nous n’allons pas le démontrer mais ce sont les chromosomes qui sont le support de l’information génétique. Nous allons noter la leçon. Prenez vos cahiers. »

III. LE SUPPORT DE L’INFORMATION GÉNÉTIQUE.

L’information génétique est localisée dans le noyau des cellules. L’observation au microscope de cellules colorées artificiellement montre que le noyau contient des éléments qui ont été appelés chromosomes. Les chromosomes sont le support de l’information génétique.

Les chromosomes sont constitués d’un filament d’A.D.N. Ce filament peut se condenser ou se décondenser, ce qui fait que l’aspect des chromosomes n’est pas toujours le même.

Schéma d’un chromosome observé au microscope électronique

Max : « Voilà, c’est tout pour aujourd’hui. Mais avant de vous laisser partir, je vous distribue un autre document. Je vous conseille de bien l’étudier si vous voulez comprendre la suite des cours. C’est très important. Le voici… »Doc-Support-de-linformation-génétique

Max : « Voilà, maintenant vous pouvez filer ! »

Samuel  et Léo : « Au revoir monsieur Max ! »

Séance suivante

La respiration des végétaux

Max : « Bonjour à tous, enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Il me semble que c’est Léo qui a fait le dernier petit résumé. Samuel, c’est donc à ton tour. Mais tu peux faire simple si tu veux. « 

Samuel :  » Simple ? D’accord 🙂 La respiration est l’action de prélever du dioxygène dans l’environnement et d’y rejeter du dioxyde de carbone. La respiration peut s’étudier grâce à un oxymètre et de l’eau de chaux. »

Max : « Très bien Samuel. Léo, la suite s’il te plaît. »

Samuel : « Les animaux qui respirent dans l’air ont soit des poumons, soit des trachées alors que les animaux qui respirent dans l’eau ont des branchies. Parfois ils réalisent leurs échanges gazeux au travers de leur peau. Et puis il y a des animaux qui ont des comportements respiratoires particuliers, comme l’argyronète. »

Max : « Très bien ! Bravo ! »

Samuel : « Monsieur Max ! J’ai une question ! »

Max : « Je t’écoute Samuel. »

Samuel : « Monsieur Max, quels sont les organes respiratoires des végétaux ? »

Max : « Très bonne question Samuel. C’est précisément ce que nous allons étudier aujourd’hui. Tiens, je vais vous donner une photographie d’une observation au microscope d’épiderme de feuille. Je ne sais pas encore laquelle. Puis vous en ferez un dessin. »

Léo : « On ne réalise pas la préparation microscopique nous mêmes monsieur Max ? »

Max : « Nous pourrions. Mais pas cette fois. Où sont donc passés mes documents… Les voilà ! Tenez ! J’espère que vous vous souvenez des consignes pour réaliser un dessin et sa légende. »

Samuel : « Moi je m’en souviens ! »

Léo : « Moi aussi ! »

Max : « C’est ce que nous allons voir 🙂 Au travail ! »

Max : « Ah ! J’ai failli oublié. Le grossissement est de 400 fois et vous pouvez légender avec ce que nous avons vu l’an dernier. Ce sont des cellules. Elles ont donc une membrane, un cytoplasme et un noyau. »

Léo : « Merci monsieur Max. »

Un peu plus tard…

Samuel et Léo : « Fini ! »

Max : « Montrez moi ça… C’est très bien ça Léo. Samuel, ton dessin est très beau lui aussi. Je les publierai plus tard. « 

Samuel : « Monsieur Max, l’an dernier nous avons vu l’épiderme d’oignon. Il y avait des cellules allongées comme celles que nous avons dessinées. Mais il n’y avait pas les drôles de machins. C’est quoi ? »

Max : « Bonne question 🙂 Ce sont des stomates. Ils sont constitués de deux cellules de garde. Je vous fais un petit dessin au tableau… »

Dessin d’un stomate observé au microscope

Max : « Comme vous pouvez le voir, les stomates sont constitués de deux cellules de garde qui délimitent une ouverture appelée ostiole. Quand les cellules gonflent l’ostiole se ferme. Quand les cellules se dégonflent, l’ostiole s’ouvre. »

Léo : « C’est par là que les gaz respiratoires passent monsieur Max ? »

Max : « Oui Léo. Nous pouvons noter la leçon. »

III. LES STOMATES ET LA RESPIRATION DES VÉGÉTAUX.

L’observation au microscope optique d’épiderme de feuille montre des structures appelées stomates. Les stomates sont constitués de deux cellules de garde qui délimitent un ostiole. Les échanges gazeux entre la plante et l’environnement se font par les stomates.

Max : « Bien. Nous avons terminé la leçon et le chapitre. Si vous n’avez pas de question vous pouvez ranger vos affaires et sortir vous amuser en récréation. »

Samuel et Léo : « Merci monsieur Max. Au revoir monsieur Max ! »

 

Séance suivante

Les organes respiratoires

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires ! »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour 🙂 Mmmmm… Léo, c’est toi qui vas faire le petit rappel aujourd’hui. »

Léo : »Bien monsieur Max. Nous avons vu que le respiration est un échange de gaz entre un être vivant et son environnement. L’être vivant prélève du dioxygène et rejette du dioxyde de carbone. Les échanges de dioxygène peuvent être mesurés grâce à un oxymètre. C’est un appareil de mesure du dioxygène. Et les échanges de dioxyde de carbone peuvent être mis en évidence par l’eau de chaux qui est un liquide incolore qui blanchit en présence de dioxyde de carbone. »

Max : « Très bien Léo. Samuel, as-tu quelque chose à ajouter. »

Samuel : « On pourrait préciser que dans l’eau, les gaz sont dissous. Et puis nous avons revu deux méthodes : la démarche expérimentale et le commentaire de graphique. »

Max : « Très bien ! Nous pouvons aborder le problème suivant. Vous l’aviez d’ailleurs posé en début d’année… »

Samuel : « Je sais ! On pourrait se demander : Avec quoi les animaux respirent-ils ?« 

Max : « Exact Samuel ! Vous allez étudier cela tout seuls grâce aux documents de votre manuel, aux pages 18 à 21. Je vous demande de compléter le tableau que je vais vous donner, puis vous rédigerez un court texte qui parle des organes respiratoires. »

Samuel et Léo : « Bien monsieur Max. »

Max : « Voici le tableau… »

Léo : « Monsieur Max, les milieux de vie et de respiration sont bien l’air et l’eau ? »

Max : « Oui Léo, un animal vit soit dans l’air soit dans l’eau. Et il respire dans l’air ou dans l’eau. »

Samuel : « Et les réponses sont dans les documents ? »

Max : « Oui Samuel. Au travail maintenant ! »

Max : « Alors ? Ça avance ? »

Samuel : « C’est terminé monsieur Max ! »

Max : « Montrez-moi… Mais c’est très bien tout ça ! Bravo mes petits. Je donne quand même la correction… »

Max : « Passons au petit texte. Léo, peux-tu lire ce que tu as écrit ? »

Léo : « Bien sûr monsieur Max. D’après le tableau nous pouvons voir que les organes qui permettent de respirer dans l’air sont les poumons et les trachées alors que ceux qui permettent de respirer dans l’eau sont les branchies. »

Max : « Très bien Léo. J’ajouterai que la peau permet parfois aux animaux aquatiques de respirer dans l’eau. Samuel, as-tu ajouté quelque chose ? »

Samuel : « Oui. Nous voyons aussi que certains animaux ne respirent pas dans leur milieu de vie. ils doivent alors adopter des comportements respiratoires particuliers. »

Max :  « Bravo Samuel ! Et très bien à toi Léo. J’ai noté l’essentiel au tableau. Prenez vos cahiers. Nous allons noter la leçon. »

Quels sont les organes qui permettent de respirer ?

II. LES ORGANES RESPIRATOIRES DES ANIMAUX.

Les organes qui permettent de respirer dans l’air sont les poumons et les trachées.

Les organes qui permettent de respirer sous l’eau sont les branchies et parfois la peau.

Les animaux qui ne respirent pas dans leur milieu de vie doivent adopter des comportements respiratoires particuliers. Certains remontent à la surface pour respirer (dauphins, limnées…). D’autres plongent avec une réserve d’air (Dytique, argyronète…). Des animaux à branchies peuvent survivre dans l’air en gardant leurs branchies humides.

Max : « Vous avez bien travaillé et il nous reste un peu de temps. Je vais vous montrer une petite vidéo… Soyez sages 🙂 « 

Léo : « Une araignée qui vit sous l’eau ! »

Samuel : « Je savais même pas que ça existait ! »

Léo : « Ben moi non plus. Elle respire dans l’air mais sous l’eau 🙂 « 

Samuel : « C’est rigolo 🙂 « 

Max : « Oui 🙂 Bien, cette fois la leçon est terminée. Vous pouvez ranger vos affaires et filer en récréation. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : »Au revoir mes petits. »

Séance suivante

La phagocytose et la fièvre

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Léo, le petit rappel s’il te plaît. »

Léo : « Oui monsieur Max. Nous avons vu les signes visibles que le corps réagit à une infection. Il y a la réaction inflammatoire. La zone infectée rougit, gonfle, s’échauffe et devient douloureuse. Et parfois il y a du pus. »

Max : « Très bien Léo. Samuel, peux-tu nous rappeler ce qu’est le pus ? »

Samuel : « Oui monsieur Max. Nous avons observé une goutte de pus au microscope alors je sais ce qu’il y a dans le pus. Le pus est constitué de lymphe, de bactéries ou de cellules infectées par des virus, de leucocytes et de cellules mortes. Les leucocytes sont aussi appelés globules blancs et il y en a de nombreux types. »

Max : « Bravo à tous les deux ! Nous pouvons donc aborder la suite. Le problème est simple. Comment font les leucocytes pour tuer les bactéries ou les cellules infectées ? »

Léo : « Oulala ! Mais ça a l’air compliqué ça ! »

Max : « Non, n’ayez pas peur. Je vais vous donner un petit film pour vous aider. Le voici… »

Léo : « Monsieur Max, j’ai une question mais pas vraiment en rapport avec la phagocytose. »

Max : « Je t’écoute Léo. »

Léo : « Monsieur Max, lors de la réaction inflammatoire la température augmente. Je sais aussi que lorsqu’on est malade on a de la fièvre. A quoi sert cette élévation de température ? »

Max : « Bonne question mon petit Léo. Attendez un instant… Voilà ! J’ai là un graphique qui va vous permettre de trouver vous-mêmes la réponse à ta question Léo. »

Max : « Vous connaissez la méthode. Je vous rappelle qu’il faut regarder les grandeurs et les unités représentées sur les axes ce qui vous permettra de donner un titre au graphique. Ne vous inquiétez pas de l’unité utilisée sur l’axe vertical. Ensuite vous donnez l’évolution de la grandeur verticale en fonction de la grandeur horizontale. Puis vous pourrez conclure. Vous aurez alors la réponse à la question de Léo. Vous me ferez cela pour la prochaine fois. « 

Samuel et Léo : « Au revoir monsieur Max ! »

Séance suivante

La réaction inflammatoire

Max : « Bonjour à tous, enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Bonjour, bonjour… Bien, nous allons entamer un nouveau chapitre. »

Léo : « On ne fait pas de petit rappel aujourd’hui ? »

Max : « Pourquoi pas ? Léo, peux-tu me parler de l’infection bactérienne ? »

Léo : « Oui monsieur Max, je peux vous parler DES infections bactériennes. Il y a les infections locales. La bactérie reste sur le lieu de l’infection et se multiplie par mitose. Les nombreuses bactéries utilisent le dioxygène et les nutriments normalement destinés à l’organe infecté et ça dérègle le corps. Il y a aussi les toxémies comme le tétanos. Les bactéries restent également sur place et elles libèrent des toxines qui agissent à distance sur tout le corps. Et puis il y a les septicémies. Là, les bactéries se répandent dans tout l’organisme et l’infection se généralise. C’est très embêtant et ça peut être mortel. »

Max : « Très bien Léo ! Samuel, que peux-tu nous dire des infections virales ? »

Samuel : « Que c’est plus compliqué que les infections bactériennes 🙂 Vous nous avez dit de retenir que les virus sont des parasites cellulaires qui utilisent la cellule qu’ils infectent pour se multiplier. »

Max : « Tu as retenu l’essentiel Samuel. J’ajoute que la cellule se trouve légèrement modifiée. Nous verrons plus tard l’importance de ce détail. Pour le moment revenons à l’infection bactérienne. Imaginez que vous vous blessiez à la patte. »

Léo : « Aïe ! »

Samuel  : « Ouille ! »

Max :  » Mes pauvres petits… »

Léo : « Ça peut s’infecter ! »

Max : « Je vous expliquerai plus tard comment soigner les plaies. Avez vous déjà vu une plaie infectée ? »

Samuel et Léo : « … »

Max : « Voici une photographie d’une petite plaie cutanée infectée. On parle d’abcès cutané. Pourriez-vous identifiez les signes de l’infection ? »

Photographie d’un abcès cutané

Léo : « C’est gonflé et rouge ! »

Samuel : « Il y a du pus ! »

Max : « Bien observé 🙂 Il y a deux autres signes qui ne se voient pas sur la photographie. »

Léo : « Ça fait mal ! »

Samuel : « Et il me semble que c’est un tout petit peu plus chaud qu’autour… »

Max : « Très bien ! Vous venez de donner les signes de la réaction inflammatoire. C’est une réaction rapide du corps à l’infection. C’est ce qu’il se passe à chaque fois que vous avez une infection locale. « 

Léo : « Même pour une angine bactérienne par exemple ? »

Max : « Oui Léo. La gorge gonfle et s’échauffe légèrement. La muqueuse rougit et blanchit si du pus se forme. »

Samuel : « Et ça fait mal ! Surtout quand on avale… »

Léo : « Mais monsieur Max, qu’est ce que le pus ? »

Max : « Bonne question Léo ! Observons une goutte de pus au microscope. Voici une photographie. Faites-en un dessin. Nous verrons pour la légende.. »

Photographie d’une goutte de pus observé au microscope. Phagocytose : leucocytes phagocytant des bactéries. MO, CID, x 200 (format 24 x 36 mm).

Max : « Vos dessins sont très beaux mes charmants petits. Nous pouvons ajouter la légende. Vous avez représenté des bactéries et des leucocytes. »

Léo : « C’est quoi un leucocyte monsieur Max ? »

Max : « Ce sont les globules blancs. Ce mot vient du grec Leucos qui signifie blanc auquel on a ajouté le suffixe –cyte qui indique qu’on parle de cellules. Ce sont des cellules blanches présentes dans le sang et la lymphe. »

Samuel : « Alors si je comprends bien, dans le pus, il y a les cellules ennemis – ici se sont des bactéries – et des cellules qui sont nos défenseurs, les leucocytes. Il ya également de la lymphe. »

Max : « Oui Samuel, tu as bien compris. Le pus est donc un champ de bataille 🙂 Nous étudierons cela plus tard. « 

Samuel : « Monsieur Max, j’ai une question ! »

Max : « Je t’écoute Samuel. »

Samuel : « Jusque là nous avons vu qu’il existe des organes organisés en appareils ou en système quand ils servent à la même fonction biologique. Par exemple il y a tous les organes de la digestion qui forment l’appareil digestif. Est ce qu’il existe un appareil ou un système pour lutter contre les microbes ou est ce qu’il existe que des cellules ? »

Max : « Excellente question Samuel ! Il existe bien un ensemble d’organes qui ont comme fonction de lutter contre les microbes. Ces organes forment le système immunitaire. En voici un schéma. »

Max : « Les organes lymphoïdes primaires sont ceux qui fabriquent les cellules immunitaires c’est à dire tous les leucocytes. Et il y a de nombreux types de leucocytes. Nous en verrons quelques uns seulement. Les organes lymphoïdes primaires sont le thymus et la moelle osseuse située dans les os longs ou plats. Les organes lymphoïdes secondaires stockent ou permettent la circulation des leucocytes. Vous voyez en noir les vaisseaux lymphatiques. Ce sont des vaisseaux qui se trouvent généralement le long des vaisseaux sanguins et dans lesquels circulent la lymphe. La lymphe est un liquide incolore qui contient de l’eau, des sels et des leucocytes. Si vous avez déjà eu des cloques à cause de chaussures mal adaptées ou de brûlures vous avez déjà vu la lymphe 🙂 « 

Léo : « Monsieur Max, est-ce qu’il faut tout retenir le système immunitaire ? »

Max : « J’aimerais bien et vous en êtes capables. Mais retenez surtout qu’il existe. Bien, c’est suffisant pour aujourd’hui. Rangez vos affaires et sortez vous dégourdir les pattes. »

Samuel et Léo : « Au revoir monsieur Max ! »

Max : « Au revoir mes petits. »

Séance suivante

Les barrières naturelles

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez-vous et sortez vos affaires. Vous êtes tous là… Léo, veux-tu faire le petit rappel de début de cours s’il te plaît. »

Léo : « Oui monsieur Max. Nous étudions les microbes. Un microbe est un être vivant de petite taille, invisible à l’œil nu. Pour l’observer il faut utiliser un microscope. Les microbes appartiennent à différents groupes biologiques. Il y a les bactéries, les virus, les protozoaires, les micro-acariens, les micro-champignons… Tous les microbes ne rendent pas malades. Ce sont seulement les microbes pathogènes qui rendent malades. Certains nous sont indispensables comme ceux qui constituent le microbiote intestinal ou le microbiote buccal. Et il y a ceux qui nous permettent de faire des aliments comme le fromage, le yaourt… »

Max : « Très bien Léo. Samuel, veux-tu prendre la suite ? »

Samuel : « Oui monsieur Max. Un être vivant ou un objet qui ne porte aucun microbe est dit stérile. Mais c’est très difficile d’obtenir un objet stérile. Pour un être vivant c’est impossible. C’est à cause de la contamination. La contamination est la transmission de microbes d’un objet ou d’un être vivant à un autre objet ou un autre être vivant. On limite souvent la contamination à la transmission de microbes entre individus mais c’est une imprécision. Les objets sont souvent source de contamination. L’air, l’eau ou même les aliments peuvent nous contaminer. »

Max : « Bravo mes petits, vous connaissez parfaitement vos leçons.

Léo : « Monsieur Max puis-je poser une question ? »

Max : « Bien sûr Léo. »

Léo : « Monsieur Max, comment se fait-il que nous ne soyons pas toujours malades avec tous les microbes qu’il y a dans notre environnement ? D’autant plus que dès que je prête mon crayon à Samuel je le contamine. Et là, je vous contamine en vous parlant. Je suis désolé de vous contaminer monsieur Max. »

Max :  » 🙂 Il ne faut pas être désolé Léo. Je te rends ta contamination en te répondant 🙂 Mes petits, vous avez le don de poser les bonnes questions ! Qu’est ce qui fait que nous ne sommes pas malades plus souvent ? C’est ce que nous allons étudier dans la suite du cours. Commençons pas nos barrières naturelles. »

Samuel : « Il y a la peau monsieur Max ! Elle empêche les microbes d’entrer ! »

Max : « Pas seulement. Vous ai-je déjà schématisé un être vivant ? »

Léo : « Oui monsieur Max 🙂 Vous aviez fait un cercle au tableau. »

Samuel : « Le trait représente la peau. Ce qui est à l’intérieur du cercle est dans l’organisme, alors que ce qui est à l’extérieur du trait est dans l’environnement. »

Max : « Exact Samuel ! Affinons un peu. Je peux ajouter le tube digestif à ce schéma… »

Max : « Voilà ! Nous pourrions ajouter d’autres organes comme les poumons ou la vessie mais cela compliquerait inutilement pour le moment. »

Léo : « Si je me souviens bien, ce qui est dans le tube digestif n’est pas dans le corps. »

Samuel : « Ben oui ! Pour entrer dans le corps il faut traverser le trait noir -la peau- ou le trait rouge… Monsieur Max, le trait rouge, que représente t-il ? »

Max : « Encore une bonne question ! Ce sont les muqueuses digestives. On appelle muqueuses les revêtements des cavités externes de l’organisme. »

Samuel : « Si je comprends bien, au niveau du visage il y a la peau. Puis les lèvres et si on continue dans la bouche on trouve la muqueuse buccale. »

Max : « Oui Samuel. »

Léo : « Ou alors il y a les narines avec la muqueuse nasale. »

Max : « Nous pourrions ajouter les muqueuses œsophagienne, gastrique, intestinale, vaginale… Toutes les muqueuses produisent des sécrétions appelées mucus qui contribuent, entre autres, à empêcher les microbes d’entrer. »

Samuel : « Comme ce qu’on a dans le nez ? »

Max : « Oui Samuel. Excellent exemple puisque la muqueuse nasale produit ce qu’on appelle de la morve. Je sais, ce n’est pas très ragoutant. En latin, mucus signifie morve. »

Léo : « Alors, en résumé, le corps est protégé par la peau et les muqueuses qui produisent des mucus. Grâce à ces barrières naturelles les microbes ne peuvent pas entrer dans l’organisme. »

Samuel : « Mais il peuvent être à la surface de la peau ou dans les cavités naturelles. Ce n’est pas grave puisqu’ils sont toujours à l’extérieur du corps. »

Max : « Vous avez tout compris ! Je vous distribue deux documents pour préciser un peu ce que nous venons de voir puis nous noterons la leçon du jour. »

Léo : « Oulala ! Dix millions de microbes par centimètres carrés dans la paume de la main ! Et les élèves se serrent la main le matin pour se saluer ! »

Samuel : « Ils mélangent tous leurs microbes ! »

Léo : « Et les filles qui se font la bise ! Smack ! Smack ! Et hoplà les microbes plein le visage ! »

Samuel : « Bonjour la contamination ! »

Max : « C’est vrai, mais comme vous le disiez vous mêmes ils sont toujours à l’extérieur du corps… »

Léo : « Ils doivent bien trouver un moyen d’entrer ! »

Max : « Certes, nous verrons cela plus tard. Voici un autre document… »

Samuel : « Monsieur Max, je ne veux pas vous vexer mais ce schéma ressemble quand même un peu plus à un être humain. »

Max : « Tu ne me vexes pas Samuel. Mais mon schéma a le mérite de rendre compte de tous les animaux qui ont un tube digestif allant d’une bouche à un anus 🙂 « 

Léo : « Monsieur Max, qu’est ce que ça veut dire ‘pH’ ? »

Max : « Vous le verrez en chimie… Disons que c’est un indice d’acidité. Un pH neutre est à 7. Tout ce qui a un pH inférieur à 7 est acide. Tout ce qui a un pH supérieur à 7 est basique. Les microbes sont généralement adapté à un pH de 7. »

Léo : « Donc si c’est acide ou basique ils n’aiment pas. Ils sont même peut-être détruits. »

Max : « Oui Léo. »

Samuel : « Il y a donc des barrières mécaniques et chimiques qui nous protègent naturellement contre les microbes. »

Max : « Et nous pouvons noter la leçon. Prenez vos cahiers et notez. »

III. LES BARRIÈRES NATURELLES.

Le corps est protégé des microbes par les barrières naturelles que sont la peau et les muqueuses. Les muqueuses recouvrent les cavités externes de l’organisme. Elles produisent des mucus. Les barrières naturelles offrent donc une protection mécanique mais aussi chimique. Grâce à ces barrières naturelles, les microbes restent à l’extérieur du corps.

Séance suivante

Un petit bilan

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Léo : « Bonjour monsieur Max. La dernière fois vous nous aviez parlé d’un bilan. Vous allez le faire aujourd’hui ? »

Max : « Oui. Je vais tacher de vous expliquer la différence entre la mitose et la méiose. Commençons par la mitose. Pouvez-vous m’en rappeler l’essentiel ? »

Samuel : « La mitose, grâce à la phase de duplication de l’A.D.N. qui la précède, permet de donner deux cellules parfaitement identiques à partir d’une cellule unique. »

Max : « Oui Samuel. Et c’est le moyen de reproduction des organismes unicellulaires. »

Léo : « Mais alors… Tous les individus d’une population d’unicellulaires sont identiques ! »

Max : « On dit qu’ils forment un clone. Ils sont tous identiques et donc tous sensibles de la même façon à une modification de l’environnement. »

Samuel : « Ils peuvent tous mourir d’un coup ! »

Max : « Ou s’adapter tous ensemble. Dans un monde de mitose, l’altérité n’existe pas. »

Léo : « Monsieur Max, pourriez-vous définir l’altérité s’il vous plaît ? »

Max : « L’altérité ? C’est tout simple mon Léo. L’autre est autre car il est différent. Si les petizours se reproduisaient par mitose il n’y aurait pas de Léo et de Samuel. »

Samuel : « Monsieur Max, me permettez-vous de vous contredire ? »

Max : « Je t’y encourage ! »

Samuel : « Dans le monde de mitose les individus seraient génétiquement identiques mais leurs caractères acquis et leurs expériences seraient différents. Tous les petizours ne seraient pas absolument identiques. »

Max : « Tu as raison Samuel. Bravo ! »

Léo : « Il n’y aurait quand même pas beaucoup de diversité. »

Max : « Vous verrez plus tard qu’il existe des échanges de gènes entre unicellulaires et la diversité existe quand même. Passons au monde de méiose. Peut-être avez-vous remarqué que la méiose ne diffère de la mitose que par la phase de séparation des paires de chromosomes doubles ? »

Léo : « Oui, il y a une étape supplémentaire. Mais elle est comme intercalée dans la mitose. »

Samuel : « Et ses étapes sont les mêmes. Condensation des chromosomes, alignement à l’équateur, migration vers les pôles… »

Max : « Ce qui laisse supposer que la méiose vient d’une mitose qui s’est mal passée. Mais la sexualité était née 🙂 « 

Léo : « Et la diversité est apparue. »

Samuel : « Ainsi que l’altérité ! »

Max : « L’évolution aussi. Puisque la sélection naturelle ne peut s’exercer que sur une population montrant une variation inter individuelle importante. »

Samuel : « Alors le monde que nous connaissons est le produit d’une mitose ratée ? »

Max : « Oui Samuel. »

Léo : « On est bien peu de choses… »

Max : « C’est sur cette belle parole que nous allons arrêter la génétique. »

Léo : « Qu’allons nous faire maintenant monsieur Max ? »

Max : « La défense de l’organisme contre les microbes… On appelle cela l’immunologie. »

Samuel : « Monsieur Max, cette séance était un peu philosophique. C’est toujours comme ça en sciences ? »

Max : « Oui Samuel. C’est tout le charme de cette discipline. j’ai un travail à vous donner. Une question… Que donnerait un monde sans altérité ? N’oubliez que pour ce genre de question, c’est la réflexion qui prime. N’écoutez jamais quelqu’un qui veut vous donner des réponses. Écoutez plutôt celui qui réfléchit. Profitez bien de votre récréation et à bientôt mes petits. »

Samuel et Léo : « Merci monsieur Max. »

Séance suivante

La fécondation à l’origine d’un programme génétique unique et nouveau

Max : « Bonjour à tous ! Enlevez vos blousons, asseyez vous et sortez vos affaires. »

Samuel et Léo : « Bonjour monsieur Max ! »

Max : « Léo, c’est à ton tour de faire le petit rappel aujourd’hui. La dernière séance uniquement. »

Léo : « Lors de la dernière séance nous avons vu que les cellules-souches peuvent donner des gamètes génétiquement différents à cause de la répartition aléatoire des chromosomes lors de la première multiplication de méiose. »

Max : « Excellent résumé ! Bravo Léo ! Aujourd’hui nous allons parler de la fécondation. »

Samuel : « La fécondation est la rencontre suivie de la fusion d’un ovule et d’un spermatozoïde. La fécondation donne naissance à une cellule-œuf à l’origine d’un nouvel individu. »

Max : « Oui Samuel. »

Léo : « Et nous savons que les gamètes ont 23 chromosomes, un seul de chaque paire. »

Samuel : « Alors lors de la fécondation, chaque gamète apporte un chromosome et les paires sont reconstituées. »

Léo : « Si le spermatozoïde contient un chromosome sexuel X l’individu sera de sexe féminin. »

Samuel : « Si le spermatozoïde contient un chromosome sexuel Y l’individu sera de sexe masculin. »

Max : « Vous n’avez plus besoin de moi mes petits 🙂 Et si nous ajoutions les allèles à cette histoire ? »

Léo : « Oulala ! »

Samuel : « Ça peut être compliqué… »

Max : « Mais vous allez y arriver. Commençons par un exemple simple. Imaginons un papa de groupe sanguin A (avec les allèles A et O) et une maman de groupe B (avec les allèles B et O). Quels pourraient-être les groupes sanguins des enfants ? »

Léo : « Il faut d’abord trouver les allèles présents dans les gamètes. »

Samuel : « Puis faire un tableau pour la fécondation. »

Léo : « Dans lequel on reconstitue les paires de chromosomes. »

Samuel : « Puis à partir des allèles on retrouve le caractère exprimé chez l’enfant. »

Max : « Vous avez compris la méthode. Au travail ! »

Un peu plus tard…

Léo : « C’était facile 🙂 « 

Samuel : « De la rigolade ! »

Max : « Alors au tableau Samuel ! »

Samuel : « Oui monsieur Max. Le papa peut faire des spermatozoïdes qui contiennent soit A soit O. Les ovules de la maman peuvent contenir soit B soit O. Ensuite on fait le tableau de fécondation.

Ovule

Spermatozoïde

B O
A A/B

[AB]

A/O

[A]

O B/O

[B]

O/O

[O]

Grâce à ce tableau nous pouvons voir que les enfants pourraient être des groupes AB, A, B ou O. »

Max : « Bravo Samuel ! Faisons plus difficile. Ajoutons le groupe rhésus. Le papa est rhésus positif (allèles Rh+ et Rh-) et la mamn et rhésus négatif. »

Léo : « Monsieur Max, puis-je aller le faire directement au tableau ? »

Max : « Oui Léo. »

Léo : « Alors… Le papa peut faire des spermatozoïdes… Rh+/A ; Rh-/A ; Rh+/O et Rh+/O. Pour la maman c’est plus simple. Les ovules peuvent contenir Rh-/B et Rh-/O. Puis-je me dispenser du tableau monsieur Max ? »

Max : « Je ne préfère pas Léo. »

Léo : « Bien monsieur Max. Je le fais alors…

On voit donc que ces parents pourraient avoir 8 enfants génétiquement différents. »

Max : « Excellent travail Léo. Bien nous avons terminé. »

Léo : « Monsieur Max, si chaque parent peut produire plus de 8 millions de gamètes génétiquement différents, on peut penser qu’au total il pourrait avoir 64 mille milliards d’enfants génétiquement différents. C’est ça ? »

Max : « Oui Léo. Certains ne différeraient que par un caractère mais ils seraient quand même différents. »

Samuel  : « Nous allons terminer le cours monsieur Max ? »

Max : « Oui, puis je vous ferai un petit bilan de la transmission de l’information génétique. Prenez vos cahiers et notez. »

V. FÉCONDATION ET ALLÈLES.

Lors de la fécondation, un spermatozoïde pris au hasard parmi les millions produits par le père rencontre et fusionne avec un ovule pris au hasard parmi les millions produits par la mère.

Lors de la fécondation, les paires de chromosomes sont reconstituées, chaque gamètes apportant un chromosome de chacune des paires. C’est le spermatozoïde qui fixe le sexe de l’individu.

Lors de la fécondation, chaque gamète apporte ses allèles provenant du parent. Un couple pourrait avoir plus d’enfants génétiquement différents qu’il y a eu d’êtres humains sur terre depuis l’apparition de l’espèce humaine.

Chaque enfant reçoit donc une partie de son patrimoine génétique de son père, une autre de sa mère. Chaque programme génétique est unique et nouveau.

Séance suivante